The Wide World of
Almost-Actors:

Can | Have an Erlang Pony?
SO

' |
C :
-, &
\ -
. A,
AR -
O

clojure.mn @ SPS Commerce
Wednesday, Aug 14, 2019
Scott Lystig Fritchie

Wallaroo Labs

Introducing Myself

e | am Scott Lystig Fritchie
e Currently at Wallaroo Labs
e Formerly: VMware Research, Basho, Gemini Mobile,
Caspian Networks, Sendmail, and UNIX sysadmin prior
e 20 year Erlang anniversary
o @silfritchie at GitHub and Twitter
e | eat and cook a lot of Japanese food

Outline of the Talk ®

e (= BEAM Actors)
e False!
e Input from y’all about actors in Clojure!
Actor Model: defined & argued about
Very brief overview to the Erlang & Pony languages
26 extra dimensions to the Actor Model
Actor implementations: BEAM languages vs. Pony

My Goals For You

e Better understanding of what the Actor Model is
e Many dimensions to design & build an actor system
e BEAM & Pony are quite similar
e ... except where they aren’t
e Pony is interesting enough to learn more about

(= BEAM Actors)

false

The Actor Model: 2019’s View *_

1. The actor is the fundamental unit of computation
2. An actor has its own state: registers, memory, etc.
3. An actor can read & modify only its own state
e |t is private state: no other actor has any access
e Global state (variables, registers,...) does not exist

1. An actor can react to a message that was sent to it
2. An actor can create a new actor
3. An actor can send a message to another actor

Message passing is the only communication
mechanism between actors.

Let’'s Look at Actor
History

First (?) Paper About Actors . @

e Hewitt,
Bishop, &
Steiger,
1973

A Universal Modular ACTOR Formalism
for Artificial Intelligence
Car] Hewitt
Peter Bishop
Richard Steiger
Abstract
r ACTOR architecture and definitional method fo
sed on a single kind of object: actors [or, if
s, or streams]. The formalism makes no presup
e data structures and control structures. Such
ard wired in a uniform modular fashion. In fac
ven object is "really" represented as a list, a
The architecture will efficiently run the co
1 intelligence languages including those requir
cy is gained without loss of programming genera
ficient; it does not change their behavioral
s general with respect to control structure and
t, or semaphore primitives. The formalism achi
ed to achieve by other more structured methods.

Book About Actors %

SEMANTICS OF COMMUNICATING PARALLEL PROCESSES

by
e Greif’'s Ph.D. IRENE GLORIA GREIF
TheSiS, 1 975 S.B., Massachusetts Institute of Technology, 1969

S.M., Massachusetts Institute of Technology, 1972

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Sentember. 1976

Paper About Actors '

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Working Paper 134A May 19, 1977
Laws for Communicating Parallel Processes
by
Carl Hewitt and Henry Baker

Book About Actors % %
BT O R S

e Agha, 1986 W V1odel of
Concurrent
Computation in
Distributed Systems

2 Gul Agha

Agha’s “Basic Constructs” >

i.e., with actors not defined within the configuration. A program in an
actor language consists of :

o behavior definitions which simply associate a behavior schema with
an identifier (without actually creating an actor).®

e new ezxpressions which create actors.
e send commands which create tasks.

e a receptionist declaration which lists actors that may receive commu-
nications from the outside.

e an external declaration which lists actors that are not part of the
population defined by the program but to whom communications
may be sent from within the configuration.

Actor Model Is Very General > %

The Actor Model differs from its predecessors and most current models of
computation in that the Actor Model assumes the following:
e Concurrent execution in processing a message.
e The following are not required by an Actor: a thread, a mailbox, a
message queue, i1ts own operating system process, etc.”
e Message passing has the same overhead as looping and procedure
calling.
e Primitive Actors can be implemented in hardware.!

Cells Are Actors (1977) ‘

IV. CELLS

One of the simplest examples of an actor which depends on its arrival ordering for correct
behavior is the cell. The cell in actor theory is analogous to the program variable in modern
high-level programming languages in that it has a value which can be changed through assignment.
This value is encoded as the cell's single, changeable acquaintance which is initialized to the name
of some actor when the cell is created. A cell responds to two types of messages, "contents?” messages
and "store!” messages. When a cell receives a request [contents? reply-to: c], the cell sends the name
of its acquaintance to the actor c. When a cell receives a request [store! y reply-to: c], it memorizes
new contents by making y its new acquaintance, forgetting its previous acquaintance, and then
sending an acknowledge message to c.

Retrospective papers) ¥

- Ten Years of Analyzing Actors: Rebeca Experience
Marjan Sirjani & Mohammad Mahdi Jaghoori

« 43 Years of Actors: A Taxonomy of Actor Models and Their
Key Properties

» Joeri De Koster, Tom Van Cutsem, & Wolfgang De Meuter

« History of Actors
Tony Garnock-Jones

Hasty Overview of Erlang Y

e Functional programming language
e bound vs. unbound variable
e A program is divided into processes
e Process = actor’ish thing = “green thread”
e A process can crash
e There are no global variables
e ... though cheating is possible
e All comm’s between processes is async message passing
e ... though cheating is possible
e Each process has a “mailbox” to queue msgs not received yet

Q O
3%

<X

>

Basic Sequential Erlang

2.

+
+

Il
I AN

Y.
Y

Bound vs.

o® o©° o©

o©

X 1is
Y is
X is
X's

T E
| J TN
| C
¢ i :
" 3

unbound variables

now bound
now bound

bound,

42 /= 48, CRASH!

“"new” val => different name

Basic Sequential Erlang '!f{(@

my loopl(N) when N < 10 ->
io:format(“Hello, N is %d\n”, [N]),
my loopl(N + 1);

my loopl(N) -> my loopl(0).
ok. % End of loop my loopl(-12).
my loopl(1l2).
my loop2(10) -> my_loopl(“7").
ok; % End of loop

my loop2(N) ->
io:format(“Hello, N is %d\n”, [N]),
my loop2(N + 1).

Basic Sequential Erlang > %

my loop3(N) ->
case N of
00988877766655544433322211100099988877766 ->
ok;
= % 1s wildcard pattern
io:format(“Hello, N is %d\n”, [N]),
my loopl(N + 1)
end.

Basic Sequential Erlang . @

O

my loop4(N) ->
Seq = lists:seq(l, 10), % list [1,2,..,9,10]
[io:format(“Hi, N = %d\n”, [N]) || N <- Seq].

%

Basic Message Passing in Erlang® " "(§.

Pid = spawn(..yo..). %% We create a new process
Answer = 7.

Pid ! Answer.

Pid ! {Answer, 43}.

yo() ->
receive
M ->
io:format (“Message = ~p\n”, [M])
end,
yo() -
Message = 7
Message = {7, 43}

*

Basic Message Passing in Erlang ‘i"i\f

g

|
/2

¥

Pid = spawn(..yo..). %% We create a new process
pid ! 7. %% Never handled by Pid
pid ! {7, 43}.
yo() ->

receilive

{GI B} ->
io:format(“Yes = ~p, No = \n”, [G, B])
end,
yo() .

Yes = 7, No = 43

Basic Message Passing in Erlang®_ (%,

yo() ->
Magic = 8,
receive
{GI B} ->
io:format(“Yes = ~p, No = \n”, [G, B]);
Magic ->
io:format (“Got the magic number!\n”);
Else ->
io:format (“Got unknown: ~p\n”, [Else])
end,

yo() -

Basic Message Passing in Erlang® " ~(§.

yo() ==
receive
{GI B} ->
io:format(“Yes = ~p, No = \n”, [G, B]),
yo():;

after 5000 ->
io:format(“5 second timeout!\n”)
%% Looping ends here

end.

Locality: Names Are Special > T

lIl. LOCALITY

Information in an actor computation is intended to be transmitted by, and only by, messages.
The most fundamental form of knowledge which is conveyed by a message in an actor computation
is knowledge about the existence of another actor. This is because an actor A may send a message
to another actor B only if it "knows about” B, i.e. knows B’s name. However, an actor cannot know
an actor’s name unless it was either created with that knowledge or acquired it as a result of
receiving a message. In addition, an actor cannot send a message to another actor conveying names

he does not know. In the next section we give restrictions which enable actor computations to satisfy
these intentions.

Locality: Names Are Special " ey

Locality and security mean that in processing a message: an Actor can send
messages only to addresses for which it has information by the following
means:

1. that it receives in the message

2. that it already had before it received the message

3. that it creates while processing the message.

Forbidden to (Real) Actors! ’f\@ff’@

D list_to_integer/2

D list_to_pid/1

D list_to_port/1

D list_to_ref/1

D list_to_tuple/1

D load_module/2

D load_nif/2

D loaded/0

D localtime/0

D localtime_to_universaltime/1
D localtime_to_universaltime/2
D make_ref/0

D make_tuple/2

D make_tuple/3

D map_get/2

list_to_pid(String) -> pid()
Types
String = string()

Returns a process identifier whose text representation
is a String, for example:

> list_to_pid("<0.4.1>").
<0.4.1>

Failure: badarg if String contains a bad
representation of a process identifier.

This BIF is intended for debugging and is not to be used in

ﬂr\'\lif\ﬂ*if\n el aTeald=12aTal

=

Erlang’s Other Differences with Actors® (%,

[erlang-questions] Erlang is *not* a implementation of the
Actor model Re: Go vs Erlang for distribution

Peer Stritzinger <peerst@gnail.con>
Sun Jun 22 23:58:34 CEST 2014

e Previous message: [erlang-questions] Go vs Erlang for distribution
e Next message: [erlang-questions] Erlang is *not* a implementation of the Actor model Re: Go vs Erlang for distribution

e Messages sorted by: [date | [thread | [subject | [author]

On 2014-06-22 02:07:12 +0000, Miles Fidelman said:
> I see Erlang as an implementation of the Actor model, a la Carl Hewitt -

This crops up again and again but still isn't true.

Arguing That Erlang /= Actors ~_

e Selective receive reorders message delivery

e Process links that kill processes is very un-actor’ish
e Monitors also

e Preemptive scheduling

e Actors must use Messaging exceptions, not die
e without exception?

e No garbage collection of inactive actors

Robert Virding <rvirding@gnail.con>_
Wed Jun 25 00:09:35 CEST 2014

e Previous message: [erlang-questions] Erlang is *not* a implementation of the Actor n
distribution

e Next message: [erlang-questions] Erlang is *not* a implementation of the Actor mode
distribution

e Messages sorted by: [date | [thread | [subject] [author]

I think it is very lucky that we weren't interested in, or worried about,
the theoretical aspects, or that we had heard about the actor model. If we
had we would probably still be discussing whether we were doing the actor
model and which parts of it, or where we differed and how important that
was? Or should we differ and maybe we should drop the differences to we
would comply, etc ... :=)

We were trying to solve *THE* problem and this was the best solution we
could come with. It was purely pragmatic. We definitely took ideas from

other inputs but not from the Actor model.

Robert

Agha’s
“Insensitive
Actor” can
buffer
messages
while waiting
for a particular
message
(page 54)

e \

checking-acc savings-acc

T~

-
~
’// l \\
~

buffer - (request)

A

(hold) @ |
(release) 1\

q

Figure 4.4: Insensitive behaviors provide a mechanism for locking an actor.
An insensitive actor continues to receive communications and may respond
to some kinds of communications while buffering others. Specifically, dur-
ing the dashed segment the insensitive checking account buffers any requests
for checking transactions it receives.

A
overdraft-proc

e

What is Pony?

==

Pony language & runtime safety guarantees'ﬂ;‘hfj@

Type system is fully aware of actors types & concurrency
Type safe

Memory safe

Exception safe

“If it compiles, it is data-race free.”

All messaging is pass-by-reference

Sharing data between actors is guaranteed safe

Pony compiles to target hardware CPU"Zf\Kf@

e Erlang, Elixir, LFE, etc.
e Runs on BEAM VM with optional compilation to native
code via HIPE
e Pony
e Compiles to native code via LLVM toolchain
e DWARF symbols, “looks like C++” to debuggers and
profilers

&i_,.

Side-Effect of Exception Safety . @

P

e Pony actors do not crash
e All errors must be handled explicitly
e “7?” syntax used to mark a "partial function”
e 'partial" = "may raise an error"
e Compiler enforced, of course
e No actor crashes => no (?) need for BEAM’s links &
monitors to help manage failure

Per-Actor Heaps + Distributed GC‘§® %

e Distributed GC across all actor heaps
e No "stop the world" GC
e Fully concurrent: no sync, no locks, and no barriers

(except as needed for lock-free data structures)

e Message passing maintains ref counts on shared objects
e Dead objects are reaped by allocating actor

e GC and Type System Co-Designed with ORCA protocol
e Actors are 1st class, GC’ed objects in the system
e Runtime halts when all actors are GC’ed

Can | have an Erlang
Pony?

Let's get more specific
about what an actor
iImplementation might
really need

Az

Actor’ish Design & Implementation Topics"i;;A;\(h%@

AL

1. Message sending
e Synchronous? Named? Typed? ...
2. Message receiving
e Reliable? Order? Blocking? Time? ...
3. Scheduling
e Preemptive? Priorities? Resource limits? ...
4. Message delivery guarantees
e Academic distributed systems people want to know!
5. Actor lifetime? Run forever? Byzantine? ...

K
O -
) E
e
|
0\ /
A
e

BEAM languages vs. Pony

26 Dimensions of Actor-Flavored Models

Message Sending

Synchronous vs. Asynchronous
message sending

- BEAM: async
* Pony: async

. v
Message Sending @

Named Processes vs. Unnamed
Processes

. BEAM: named SIMILAR

- Pony: named

Message Sending

What is a Message’s Destination?

- BEAM: one process
* Pony: one actor

Message Sending

Typed vs. Untyped Messages

- BEAM: untyped
* Pony: typed

Message Sending

How does data appear in a
mailbox?

- BEAM: copy to destination
heap

- Pony: ref-counted pointers +
distributed GC via ORCA
protocol

Message Receiving > T
Reliable vs. Unreliable Delivery

- BEAM: reliable’ish

- Pony: reliable S | M | LAR

Message Recelving

Message delivery order

- BEAM: any order
« Pony: FIFO only

Message Receiving > %
Causal message order guarantee

- BEAM: yes or no

* Pony: yes always S | M | LAR

Message Recelving

Blocking vs. Non-Blocking
message receive

- BEAM: yes
* Pony: no

Message Recelving

Time-Aware vs. Time-lgnorant

- BEAM: yes
* Pony: no

Scheduling

What schedules actors?

« BEAM: custom scheduler
« 1 scheduler/CPU core

* Pony: custom scheduler
« 1 scheduler/CPU core

Scheduling

Scheduler Overhead

- BEAM: {100’s} bytes/process,
{few} usec to create &
destroy

» Pony: 240 bytes/actor, {few}
usec to create & destroy

 Scheduling millions is fine

* Processes & Actors are cheap

Scheduling

Preemptive vs. Cooperative
Scheduling

- BEAM: Preemptive
- Pony: Cooperative

Scheduling > %
Actor priority schemes?

- BEAM: Yes, 4 levels
* Pony: No

Scheduling

Work stealing?

- BEAM: Yes
* Pony: Yes

Scheduling

Energy Conservation by Idle
Schedulers?

- BEAM: Yes
* Pony: Yes

Scheduling

Mailbox size limits?

- BEAM: No
* Pony: No

Scheduling

Maximum Heap Size?

- BEAM: No
* Pony: No

Scheduling > %

» Actor Lifecycle

» Cheap vs. Cheap *SAME*
- Actor Crash?

* Yes vs. No

Scheduling > T

Back-pressure to reduce workload
of overloaded actors?

- BEAM: No
* Pony: Yes

Theoretical Message Delivery Properties"f

O

AN

- Causal order: Yes
- *SIMILAR*

* - Message loss: 0%
- *SAME*

- Message duplication: 0%
- *SAME*

» - Message reordering:

"WHOA!

x r—

Actors & the Outside World "ff’@

Actor interaction with non-actors

. BEAM: yes

- Pony: yes, but... SlM | LAR

Byzantine Actors

Incorrect/Malicious Actors/
Corrupted Messages Allowed?

- BEAM: No
* Pony: No

&'_

Review of Similarities by Category®_ (%,

e SAME
o 13

e SIMILAR
o 5

e WHOA!
o 9

WHOA! Summary "

Msg Receiving: message reordering

Msg Receiving: blocking vs. non-blocking receive
Msg Receiving: time-aware vs. time-ignorant
Scheduling: preemptive vs. cooperative scheduling
Msg Sending: untyped vs. typed messages

Msg Sending: copy messages vs. shared pointers
Scheduling: actor priority schemes?

Lifecycle: actors crash?

Back-pressure for "overloaded" actors?

In Pony, one does not
simply call() a gen_server

evelr.
| 111 | | 1 | | |

K=
ISEN 3
|
O\ /
N —

In Pony, one does not
simply call() a gen_server

you cannot block awaiting for the reply.

K
O 4
75 E
°
|
0\ !
A
P

In Pony, all messaging is
1()-style or cast-style

o =8
"J' o X’K
v v@
‘ |
N i
e

... but it’s possible to work around.
Pony is fun!

Did | mention that Pony programs are usually
really, really fast?

Sources & Where to Look For More®. V@

On the Actor Model and CSP:

+ https://en.wikipedia.org/wiki/Actor_model

 https://en.wikipedia.org/wiki/
Communicating_sequential_processes

On Pony:
+ http://ponylang.io (also Pony logo
source)

* https://github.com/ponylang/ponyc/

 http://blog.acolyer.org/2016/02/17/deny-
capabilities/

 https://blog.acolyer.org/2016/02/18/
ownership-and-reference-counting-
based-garbage-collection-in-the-actor-
world/

+ https://www.youtube.com/watch?
v=e0197a0ljGQ

Sean Bean image:

New Line Cinema, The Fellowship of the
Ring, 2001
http://knowyourmeme.com/memes/one-
does-not-simply-walk-into-mordor
https://memegenerator.net/Does-Not-
Simply-Walk-Into-Mordor-Boromir

Wallaroo Lab’s source repo for Wallaroo, a
distributed stream processing system
written in Pony:
https://qgithub.com/Wallarool abs/wallaroo

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Communicating_sequential_processes
http://ponylang.io/
https://github.com/ponylang/ponyc/
http://blog.acolyer.org/2016/02/17/deny-capabilities/
http://blog.acolyer.org/2016/02/17/deny-capabilities/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://www.youtube.com/watch?v=e0197aoljGQ
https://www.youtube.com/watch?v=e0197aoljGQ
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir
https://github.com/WallarooLabs/wallaroo

Overflow slides

ORCA GC Comparison on pB’marks‘f': (8

72:20 S. Clebsch, J. Franco, S. Drossopoulou, A. M. Yang, T. Wrigstad, . Vitek
Orca Erlang C4 _ Gl
0.10
0.08 .) . L
- N e ~- ..—. --.. - o,

0.06
0.04
0.02 - e N

ce e e W o TSRS TN e
L — :

Fig. 17. Responsiveness. X-axis: request ID, Y-axis: Jitter/difference between finishing time (seconds) of
subsequent requests. Java measurements are from a warmed-up VM and does not include JIT’ing.

ORCA GC Comparison on uB'marks®_ (%,

g
Orca: GC and Type System Co-Design for Actor Languages 72:19
(c) rings (d) mailbox
le7 Orca . .Erl.ang . ' C4 1e7 Orca l-.rlang .
PY 98- NN SN OO SO0 e B ——
7= . . .

NSRS i [A T T R oo e s SO S SR B I O S
~ : - o b= - .t
v b v
2 bl T |
S s-. g s o i .
E. i B Ar
v H H v H
.g K T TECRTTTRRERPTYY SERPPTY SERPRPE E 3= *
- : (.-

2

L l ..

0-——-—— | ST e e e re

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

Bl mutator time I mutator overhead [concurrentge HEE stw gc

Fig. 16. Strong scalability on 4-64 cores. (stw=stop-the-world.)

ORCA GC Comparison on uB’'marks®_ @

Orca: GC and Type System Co-Design for Actor Languages 72:19
(a) trees (b) trees’
les Orca' . Erlang N tes Orca . Erlang _ C4
: : : y) O ' . ‘
o B S U O O O O W
] T 1s-
§3 8
E E..
v ¢ e d
E g |
- -
I | I I
..III lll ll-__ lI lll
4 16 32 64 4 8 16 32 64 4 8 16 32 64 4 16 32 64 4 8 16 32 64 4 8 16 32 64

Fig. 16. Strong scalability on 4-64 cores. (stw=stop-the-world.)

@'.

Pony Is Not a Functional Language‘f\if@

e Pony is very imperative
e ... but the type system provides lovely safety properties

Pony Has Lambdas & More

e |ambdas / unnamed functions
e map () & friends, hooray
e persistent data structures in the standard library

Pony Is Object-Oriented

e ... but not Java-style
e Not everything is an object
e You control the class hierarchy
e Has both structural & nominal subtyping
e Pony’s interface = structural typing

Pony Has Generic Types >

// map over a List[A] to
// create a List[B]

fun box map[B: B] (
f: {(this->A!): B*}[A, B] box)
ikt R E o

Pony Has Pattern Matching!

e match statement to match:
e Dbasic data types
e Sub-/super-types in class hierarchy
e tuple element destructuring
e Function head matching is gone
e ... but will return again soon (I hope)

Pony Is Open Source MY

e BSD-style license
https://github.com/ponylang/ponyc/
e Target CPUs
e x86_64, ARM
e Target operating systems:
e Linux, Windows, OS X
e FreeBSD & DragonflyBSD (limited support)
o "Get Stuff Done" development model
e Correctness > Performance > Simplicity > Consistency
> Completeness

Pony Is Young

e The standard library is small
e The open source community is small
e Ecosystem of Pony language libraries & apps is small

Pony’s FFI to C/C++ ABl *

e Easily interface to C & C++ ABI functions
e Runtime's requirements for memory & threads are modest
e Many Pony primitive data types map directly to target CPU
e I8, Il6, I32, I64, I128
e U8, Ule6, U332, U64, U128
e Array[U8] for contiguous unstructured bytes

Pony's Reference Capabilities ®.

e Strong, static type checker is the price to pay for safety
e It's a big mind shift to adjust to both:

e Mutable data (even if it is safe!)

e Pony’s type system (based on affine types)
e The end advantages:

e /Zero runtime cost for safety

e Very quick GC

Get Involved! . “’@

Web: http://ponylang.org
GitHub: https://github.com/ponylang/ponyc/
Twitter: @ponylang
Freenode IRC: #ponylang
Mailing list info: https://pony.groups.io/g/user
Pester me about Erlang, Pony, and/or Wallarc
e Anytime here at the conference
e @slfritchie on Twitter
e slfritchie@ on gmail.com

http://ponylang.org
https://github.com/ponylang/ponyc/
https://pony.groups.io/g/user

