
The Wide World of
Almost-Actors:
Can I Have an Erlang Pony?

clojure.mn @ SPS Commerce
Wednesday, Aug 14, 2019
Scott Lystig Fritchie
Wallaroo Labs

Introducing Myself
● I am Scott Lystig Fritchie
● Currently at Wallaroo Labs
● Formerly: VMware Research, Basho, Gemini Mobile,

Caspian Networks, Sendmail, and UNIX sysadmin prior
● 20 year Erlang anniversary

● @slfritchie at GitHub and Twitter
● I eat and cook a lot of Japanese food

Outline of the Talk
● (= BEAM Actors)

● False!
● Input from y’all about actors in Clojure!

● Actor Model: defined & argued about
● Very brief overview to the Erlang & Pony languages
● 26 extra dimensions to the Actor Model
● Actor implementations: BEAM languages vs. Pony

My Goals For You
● Better understanding of what the Actor Model is
● Many dimensions to design & build an actor system
● BEAM & Pony are quite similar

● … except where they aren’t
● Pony is interesting enough to learn more about

(= BEAM Actors)
false

The Actor Model: 2019’s View

1. An actor can react to a message that was sent to it
2. An actor can create a new actor
3. An actor can send a message to another actor

1. The actor is the fundamental unit of computation
2. An actor has its own state: registers, memory, etc.
3. An actor can read & modify only its own state

● It is private state: no other actor has any access
● Global state (variables, registers,…) does not exist

Message passing is the only communication
mechanism between actors.

Let’s Look at Actor
History

First (?) Paper About Actors

● Hewitt,
Bishop, &
Steiger,
1973

Book About Actors

● Greif’s Ph.D.
Thesis, 1975

Paper About Actors

Book About Actors

● Agha, 1986

Agha’s “Basic Constructs”

Actor Model Is Very General

Cells Are Actors (1977)

Retrospective papers
• Ten Years of Analyzing Actors: Rebeca Experience

• Marjan Sirjani & Mohammad Mahdi Jaghoori
● 43 Years of Actors: A Taxonomy of Actor Models and Their

Key Properties
● Joeri De Koster, Tom Van Cutsem, & Wolfgang De Meuter

● History of Actors
• Tony Garnock-Jones

Hasty Overview of Erlang
● Functional programming language

● bound vs. unbound variable
● A program is divided into processes

● Process = actor’ish thing = “green thread”
● A process can crash
● There are no global variables

● … though cheating is possible
● All comm’s between processes is async message passing

● … though cheating is possible
● Each process has a “mailbox” to queue msgs not received yet

Basic Sequential Erlang
%% Bound vs. unbound variables

X = 42. % X is now bound
Y = 6. % Y is now bound
X = X + Y. % X is bound, 42 /= 48, CRASH!
X2 = X + Y. % X’s “new” val => different name

Basic Sequential Erlang
my_loop1(N) when N < 10 ->
 io:format(“Hello, N is %d\n”, [N]),
 my_loop1(N + 1);
my_loop1(N) ->
 ok. % End of loop

my_loop2(10) ->
 ok; % End of loop
my_loop2(N) ->
 io:format(“Hello, N is %d\n”, [N]),
 my_loop2(N + 1).

my_loop1(0).
my_loop1(-12).
my_loop1(12).
my_loop1(“7”).

Basic Sequential Erlang
my_loop3(N) ->
 case N of
 99988877766655544433322211100099988877766 ->
 ok;
 _ -> % _ is wildcard pattern
 io:format(“Hello, N is %d\n”, [N]),
 my_loop1(N + 1)
 end.

Basic Sequential Erlang
my_loop4(N) ->
 Seq = lists:seq(1, 10), % list [1,2,…,9,10]
 [io:format(“Hi, N = %d\n”, [N]) || N <- Seq].

Basic Message Passing in Erlang
Pid = spawn(…yo…). %% We create a new process
Answer = 7.
Pid ! Answer.
Pid ! {Answer, 43}.

yo() ->
 receive
 M ->
 io:format(“Message = ~p\n”, [M])
 end,
 yo().
Message = 7
Message = {7, 43}

Basic Message Passing in Erlang
Pid = spawn(…yo…). %% We create a new process
Pid ! 7. %% Never handled by Pid
Pid ! {7, 43}.

yo() ->
 receive
 {G, B} ->
 io:format(“Yes = ~p, No = \n”, [G, B])
 end,
 yo().

Yes = 7, No = 43

Basic Message Passing in Erlang
yo() ->
 Magic = 8,
 receive
 {G, B} ->
 io:format(“Yes = ~p, No = \n”, [G, B]);
 Magic ->
 io:format(“Got the magic number!\n”);
 Else ->
 io:format(“Got unknown: ~p\n”, [Else])
 end,
 yo().

Basic Message Passing in Erlang
yo() ->
 receive
 {G, B} ->
 io:format(“Yes = ~p, No = \n”, [G, B]),
 yo();
 after 5000 ->
 io:format(“5 second timeout!\n”)
 %% Looping ends here
 end.

Locality: Names Are Special

Locality: Names Are Special

Forbidden to (Real) Actors!

Erlang’s Other Differences with Actors

Arguing That Erlang /= Actors
● Selective receive reorders message delivery
● Process links that kill processes is very un-actor’ish

● Monitors also
● Preemptive scheduling
● Actors must use Messaging exceptions, not die

● without exception?
● No garbage collection of inactive actors

Agha’s
“Insensitive
Actor” can
buffer
messages
while waiting
for a particular
message
(page 54)

What is Pony?

Pony language & runtime safety guarantees

● Type system is fully aware of actors types & concurrency
● Type safe
● Memory safe
● Exception safe
● “If it compiles, it is data-race free.”
● All messaging is pass-by-reference
● Sharing data between actors is guaranteed safe

Pony compiles to target hardware CPU

● Erlang, Elixir, LFE, etc.
● Runs on BEAM VM with optional compilation to native

code via HiPE
● Pony

● Compiles to native code via LLVM toolchain
● DWARF symbols, “looks like C++” to debuggers and

profilers

Side-Effect of Exception Safety
● Pony actors do not crash
● All errors must be handled explicitly

● “?” syntax used to mark a "partial function”
● "partial" = "may raise an error"

● Compiler enforced, of course
● No actor crashes => no (?) need for BEAM’s links &

monitors to help manage failure

Per-Actor Heaps + Distributed GC
● Distributed GC across all actor heaps

● No "stop the world" GC
● Fully concurrent: no sync, no locks, and no barriers

(except as needed for lock-free data structures)
● Message passing maintains ref counts on shared objects

● Dead objects are reaped by allocating actor
● GC and Type System Co-Designed with ORCA protocol

● Actors are 1st class, GC’ed objects in the system
● Runtime halts when all actors are GC’ed

Can I have an Erlang
Pony?

Let's get more specific
about what an actor
implementation might
really need

Actor’ish Design & Implementation Topics

1. Message sending
● Synchronous? Named? Typed? …

2. Message receiving
● Reliable? Order? Blocking? Time? …

3. Scheduling
● Preemptive? Priorities? Resource limits? …

4. Message delivery guarantees
● Academic distributed systems people want to know!

5. Actor lifetime? Run forever? Byzantine? …

BEAM languages vs. Pony
26 Dimensions of Actor-Flavored Models

Synchronous vs. Asynchronous
message sending

• BEAM: async
• Pony: async

Message Sending

SAME

Named Processes vs. Unnamed
Processes

• BEAM: named
• Pony: named

Message Sending

SIMILAR

What is a Message’s Destination?

• BEAM: one process
• Pony: one actor

Message Sending

SAME

Typed vs. Untyped Messages

• BEAM: untyped
• Pony: typed

Message Sending

WHOA!

How does data appear in a
mailbox?

• BEAM: copy to destination
heap

• Pony: ref-counted pointers +
distributed GC via ORCA
protocol

Message Sending

WHOA!

Reliable vs. Unreliable Delivery

• BEAM: reliable’ish
• Pony: reliable

Message Receiving

SIMILAR

Message delivery order

• BEAM: any order
• Pony: FIFO only

Message Receiving

WHOA!

Causal message order guarantee

• BEAM: yes or no
• Pony: yes always

Message Receiving

SIMILAR

Blocking vs. Non-Blocking
message receive

• BEAM: yes
• Pony: no

Message Receiving

WHOA!

Time-Aware vs. Time-Ignorant

• BEAM: yes
• Pony: no

Message Receiving

WHOA!

What schedules actors?

• BEAM: custom scheduler
• 1 scheduler/CPU core

• Pony: custom scheduler
• 1 scheduler/CPU core

Scheduling

SAME

Scheduler Overhead

• BEAM: {100’s} bytes/process,
{few} usec to create &
destroy

• Pony: 240 bytes/actor, {few}
usec to create & destroy

• Scheduling millions is fine
• Processes & Actors are cheap

Scheduling

SAME

Preemptive vs. Cooperative
Scheduling

• BEAM: Preemptive
• Pony: Cooperative

Scheduling

WHOA!

Actor priority schemes?

• BEAM: Yes, 4 levels
• Pony: No

Scheduling

WHOA!

Work stealing?

• BEAM: Yes
• Pony: Yes

Scheduling

SAME

Energy Conservation by Idle
Schedulers?

• BEAM: Yes
• Pony: Yes

Scheduling

SAME

Mailbox size limits?

• BEAM: No
• Pony: No

Scheduling

SAME

Maximum Heap Size?

• BEAM: No
• Pony: No

Scheduling

SAME

• Actor Lifecycle
• Cheap vs. Cheap *SAME*

• Actor Crash?
• Yes vs. No

Scheduling

WHOA!

Back-pressure to reduce workload
of overloaded actors?

• BEAM: No
• Pony: Yes

Scheduling

WHOA!

• Causal order: Yes
• *SIMILAR*

• - Message loss: 0%
• *SAME*

• - Message duplication: 0%
• *SAME*

• - Message reordering:
WHOA!

Theoretical Message Delivery Properties

WHOA!

Actor interaction with non-actors

• BEAM: yes
• Pony: yes, but…

Actors & the Outside World

SIMILAR

Incorrect/Malicious Actors/
Corrupted Messages Allowed?

• BEAM: No
• Pony: No

Byzantine Actors

SAME

Review of Similarities by Category
● SAME

● 13
● SIMILAR

● 5
● WHOA!

● 9

WHOA! Summary
● Msg Receiving: message reordering
● Msg Receiving: blocking vs. non-blocking receive
● Msg Receiving: time-aware vs. time-ignorant
● Scheduling: preemptive vs. cooperative scheduling
● Msg Sending: untyped vs. typed messages
● Msg Sending: copy messages vs. shared pointers
● Scheduling: actor priority schemes?
● Lifecycle: actors crash?
● Back-pressure for "overloaded" actors?

In Pony, one does not
simply call() a gen_server

ever.

In Pony, one does not
simply call() a gen_server

you cannot block awaiting for the reply.

In Pony, all messaging is
!()-style or cast-style

… but it’s possible to work around.
Pony is fun!

Did I mention that Pony programs are usually
really, really fast?

On the Actor Model and CSP:

• https://en.wikipedia.org/wiki/Actor_model

• https://en.wikipedia.org/wiki/

Communicating_sequential_processes

On Pony:

• http://ponylang.io (also Pony logo

source)

• https://github.com/ponylang/ponyc/

• http://blog.acolyer.org/2016/02/17/deny-

capabilities/

• https://blog.acolyer.org/2016/02/18/

ownership-and-reference-counting-
based-garbage-collection-in-the-actor-
world/

• https://www.youtube.com/watch?
v=e0197aoljGQ

Sources & Where to Look For More
Sean Bean image:

New Line Cinema, The Fellowship of the
Ring, 2001

http://knowyourmeme.com/memes/one-
does-not-simply-walk-into-mordor

https://memegenerator.net/Does-Not-
Simply-Walk-Into-Mordor-Boromir

Wallaroo Lab’s source repo for Wallaroo, a
distributed stream processing system
written in Pony:

https://github.com/WallarooLabs/wallaroo

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Communicating_sequential_processes
http://ponylang.io/
https://github.com/ponylang/ponyc/
http://blog.acolyer.org/2016/02/17/deny-capabilities/
http://blog.acolyer.org/2016/02/17/deny-capabilities/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://www.youtube.com/watch?v=e0197aoljGQ
https://www.youtube.com/watch?v=e0197aoljGQ
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir
https://github.com/WallarooLabs/wallaroo

Overflow slides

ORCA GC Comparison on μB’marks

ORCA GC Comparison on μB’marks

ORCA GC Comparison on μB’marks

Pony Is Not a Functional Language
● Pony is very imperative
● … but the type system provides lovely safety properties

Pony Has Lambdas & More
● lambdas / unnamed functions
● map() & friends, hooray
● persistent data structures in the standard library

Pony Is Object-Oriented
● … but not Java-style
● Not everything is an object

● You control the class hierarchy
● Has both structural & nominal subtyping

● Pony’s interface = structural typing

Pony Has Generic Types

// map over a List[A] to
// create a List[B]

fun box map[B: B](
 f: {(this->A!): B^}[A, B] box)
: List[B] ref^

Pony Has Pattern Matching!
● match statement to match:

● basic data types
● sub-/super-types in class hierarchy
● tuple element destructuring

● Function head matching is gone
● … but will return again soon (I hope)

Pony Is Open Source
● BSD-style license
● https://github.com/ponylang/ponyc/
● Target CPUs

● x86_64, ARM
● Target operating systems:

● Linux, Windows, OS X
● FreeBSD & DragonflyBSD (limited support)

● "Get Stuff Done" development model
● Correctness > Performance > Simplicity > Consistency

> Completeness

Pony Is Young
● The standard library is small
● The open source community is small
● Ecosystem of Pony language libraries & apps is small

Pony’s FFI to C/C++ ABI
● Easily interface to C & C++ ABI functions
● Runtime's requirements for memory & threads are modest
● Many Pony primitive data types map directly to target CPU

● I8, I16, I32, I64, I128
● U8, U16, U32, U64, U128
● Array[U8] for contiguous unstructured bytes

Pony's Reference Capabilities
● Strong, static type checker is the price to pay for safety
● It’s a big mind shift to adjust to both:

● Mutable data (even if it is safe!)
● Pony’s type system (based on affine types)

● The end advantages:
● Zero runtime cost for safety
● Very quick GC

Get Involved!
● Web: http://ponylang.org
● GitHub: https://github.com/ponylang/ponyc/
● Twitter: @ponylang
● Freenode IRC: #ponylang
● Mailing list info: https://pony.groups.io/g/user
● Pester me about Erlang, Pony, and/or Wallaroo:

● Anytime here at the conference
● @slfritchie on Twitter
● slfritchie@ on gmail.cοm

http://ponylang.org
https://github.com/ponylang/ponyc/
https://pony.groups.io/g/user

