DI/ODE: The Distributed I/O Development Environment

James Larson, Nick Christenson, Scott Lystig Fritchie,
Philip Guenther, Jason Evans, Charles Murray
Sendmail, Inc.

Emeryville, CA 94608

{jim,npc,scott,guenther, jasone,cmurray }@sendmail . com

Abstract

This paper describes software that can be linked
to an application which normally performs its 1/0
functions on a local server and makes them dis-
tributable and scalable in a manner which is ex-
tremely transparent to the application. Through the
use of this system, an application normally confined
to a single host can use a large number of back-end
data repositories in a manner that is arbitrarily scal-
able, manageable, and which can be extended on-the-
fly automatically and transparently to that applica-
tion.

NOTE: Lots of this stuff is pure speculation
at this moment. Many design decisions have
been stated here, but they should serve as
straw men. As details get implemented, this
document should be updated to reflect the
actual implementation.

1 Goals

Sendmail is in the business of providing email so-
lutions to our customers and the Open Source com-
munity. Part of our customer base are the extremely
high-end sites, such as Internet Service Providers,
Application Service Providers, and other businesses
that on a day-to-day basis test the capability of
current systems to send and receive high volumes
of electronic mail. In order to satisfy their needs,
Sendmail has been working on a distributed system
mail architecture. Its high-level goals can be stated
as: Arbitrary scalability, extreme robustness, ultra-
high performance, and maintainability.

Since Sendmail already has a stable full of high-
quality existing applications, it didn’t seem prudent
to go reinventing them. We were well motivated to
come up with a system that leverages our existing
applications as much as possible, and requires min-
imal modifications to them. Also, time to market is

very important, and we have a relatively small de-
velopment team, so we wanted to create a generally
useful solid foundation that was minimally complex,
such that it could be built quickly and extended
later.

We spent considerable time exploring mechanisms
that have already been developed to adapt to our
purposes. However, nothing seemed truly suitable
to what we were trying to accomplish. Existing
work, such as [Christ97], [Saito99], and [Horman99]
didn’t completely solve our problems.

DI/ODE, the subject of this paper, is our re-
sponse to this challenge. DI/ODE is a compre-
hensive system which is designed to be linked in to
existing applications with minimal, or perhaps no,
source code modifications acting as a foundation for
arbitrarily scalable Internet systems.

2 Architecture
2.1 The Big Picture

DI/ODE is a two-tiered system. The architec-
ture is diagrammed in Figure 1. In this architec-
ture there are machines that handle connections
from the outside world, which we call DI/ODE Ap-
plication Servers, and machines that store data,
which we call DI/ODE Data Servers. These systems
are connected via a high-speed low latency pocket
LAN, which, in many ways, acts as the backplane
for our “virtual computer”. In keeping with the
backplane metaphor, connections among the back-
end machines are minimally authenticated and un-
encrypted. Therefore, network(s) over which the
DI/ODE machines communicate should be dedi-
cated to this purpose and not used for other pur-
poses.



App.
Server

Data
Networ k
M etadata}
Server
Command :
. Networ k ®
Auxiliar
Services M etadata }
Server
[Command ]
Server

Figure 1: DI/ODE Architecture



The Application Servers are dataless computers
that run applications. For running Internet services,
they should have two ultra-high-speed network in-
terfaces. On one, they receive and reply to requests
from the outside world. Through the other, they
send and receive information to and from the Data
Servers. They may also use a lower speed network
interface to connect to a physically distinct Com-
mand Network. Application Servers receive updates
as to the state of the system from the Command
Server. Omne Application Server will never talk to
another. The intent of the system is to gain front-
end (front defined as facing the Internet) scalability
by the deployment of large numbers of Application
Servers operating in parallel.

The Data Servers are, essentially, dumb disk on a
network. They store and retrieve data for the Ap-
plication Servers and occasionally process adminis-
trative requests from the Command Server. They
do not initiate any communications, and one Data
Server never talks to another. They must have a
high-speed connection to the Data Network, but
should not be reachable by machines which are not
part of the DI/ODE system at all. Back-end capac-
ity can be extended arbitrarily by the deployment
of additional Data Servers. The additional storage
and I/O capacity is transparently made available to
the applications.

We also use a machine called the DI/ODE Com-
mand Server which is responsible for making cer-
tain that all the DI/ODE computers agree on the
state of the network. The Command Server is non-
operational. That is, if it crashes, all the other com-
ponents continue to operate in their current mode,
they just will not receive new updates about the
state of the system as a whole.

The goal of the Command Server is to provide
a centralized point for command and control func-
tions of a DI/ODE system. This is beneficial in two
ways. First, this provides a convenient point for hu-
man interaction with a system, both for affecting
change in the system and for monitoring the health
and status of the system. Second, the use of a single
system eliminates the need for coding difficult dis-
tributed consensus algorithms to synchronize global
state changes.

There may be times when we would like the Com-
mand Server to have a special channel to the other
DI/ODE servers in case of network failure or conges-
tion. Therefore, our design includes a second logical
network, called the Command Network, which may
be coincident with the Data Network or not, de-
pending on the preference of those deploying the
system. Because DI/ODE is intended for use in

applications with extremely high I/O requirements,
and most of the Network Interface Cards (NICs)
that come stock with today’s computers aren’t up
to the task, a site might decide that the built-in
interfaces will be used for the Command Network,
and higher-end NICs be purchased to connect com-
ponents to the Data Network, and to connect Appli-
cantion Servers to the Internet. Note, if the Com-
mand Network is physically separate from the Data
Network, and it fails, the Command Server will at-
tempt to perform its duties over the Data Network,
but the converse is not true. Even if the Data Net-
work is down, DI/ODE servers will not pass data
over the Command Network.

2.2 Components and Interfaces

The relationship between the components of the
DI/ODE system is revealed in Figure 2. On this
topic, we start with the application. This can be
any application which is able to be linked with li-
braries written in C and uses, directly or indirectly,
the STDIO and/or system calls which access files in
some manner. This application runs on an Appli-
cation Server. There is no limit on the number of
Application Servers which may be part of a DI/ODE
system. However, certain architectural decisions in
the application may limit the system’s scalability in
practice. For example, if the application can oc-
casionally lose track of the data it’s writing such
that the whole data space needs to be swept and re-
paired, and the application cannot run while this is
taking place, then for the repair process to proceed,
all invocations of the application on all Application
Servers would need to be shut down.

The next piece of the system we will discuss are
the DI/ODE Client Libraries. Currently, only one
of these exist. This library mimics the STDIO
and syscall interfaces to a vnode-based file system.
Upon instantiation, the Client Library reads the
file /etc/diode/filesock.conf to retreive a list
of sockets (may be IP or Unix domain sockets) on
which Client Daemons will listen for requests. More
than one Client Daemon may run on a given ma-
chine. The Client Library will determine which
Client Daemon to communicate with by hashing a
portion of the data item’s namespace. In the file
case, this means hashing a portion of the path to
the file itself. In practice, we use Consistent Hash-
ing [Kanger97] which costs us very little (except
in conceptual simplicity) and helps us a great deal
when we have to migrate data from one Data Server
to another. The first Client Daemon that starts
listens on a known port, our implementation uses



Access Server

The “//” indicates the boundary between the lo-

User space _
Kernel space |
User space

Kernel space

cal file cb %é)agf space. Everything
to the p %f%lf%b sepe ?tored on the Data
Servers. Every&ﬁﬂé’ €& She left of the seperator is

local to the Application Server. The “the path that
will be used by t hing algorithm in the Client
Library to deter hich Client Daemon to com-
municate with. ]

(e

o space. [Tlhese directories must exist on

hll Data Segvers.

When %plic tion Ji
brary perforfus an' open{) of a file, the open()
thaf is execute he~vension in the Client Li-
brary. This f nNﬁﬁ\MQE]l.% o see whether the file

in question is name specified in the

with the Client Li-

Figure 2: DI/ODE Interfaces

TCP/XXXX, and client daemon number n will lis-
ten on port TCP/(XXXX +n). Note that all I/O
activity happening in the same logical directory will
pass through the same Client Daemon on each Ap-
plication Server.

Additionally, the file /etc/diode/paths.conf con-
tains the list of the logical file paths that are con-
sidered to be in the “DI/ODE space” and not lo-
cal to the server in question. For example, the
paths.conf file might contain:

/var/spool/mqueue//%h
/var/mail//%i/%i/%h

/etc/dlode/paths.conf file. If so, then the I/O
request is encapsulated in an RPC request and sent
to a local Client Daemon to be sent over the Data
Network. If not, then the arguments are passed to
the “real” open() call. From then on, the Client
Library tracks which file descriptors are associated
with local or remote files and routes calls which op-
erate on data in each space appropriately.

One of the promises of DI/ODE is that it will
serve to stripe data from a single logical direc-
tory across a number of Data Servers. Therefore,
we need some mechanism to determine which files
end up on which Data Server. Our level of gran-
ularity here is the directory. That is, all files in
a single logical directory will end up in the same
physical directory on the same Data Server. The
Client Daemon runs a hash function over the “by
the number of Data Servers available (defined in the
/etc/diode/mount. conf file) The remainder deter-
mines which Data Server in the list (numbered start-
ing with one) on which that particular directory re-
sides. These calculations are all performed by the
Client Daemon, and the details of these transactions
are completely hidden from the application.

A sample /etc/diode/mount.conf file is in-
cluded below:

dsl 1 /var/spool/mqueue /data/queue/asl
nfs3:udp

ds2 2 /var/spool/mqueue /data/queue/old
nfs3:udp

dsl 1 /var/mail /data/mail nfs3:udp

ds2 2 /var/mail /data/mail nfs3:udp

The first column lists the Internet host name of
the Data Server. The second column is the hash-bin



number corresponding to that Data Server (map-
ping the output of the Consistent Hash algorithm
to an individual entity). The third column is the
local file system entry point into DI/ODE space.
The fourth column is the remote file system export
point. The fifth column lists the Data Protocol and
transport mechanism.

As the Data Network in a DI/ODE system is al-
ways assumed to be very fast and very local, we
can set timeouts to be very low. Packet loss and/or
significant response delays are never due to some
random event between a client and server, but are
local events which must have been caused by a se-
rious incident or server overload. The Client Dae-
mon has a fixed sized request queue. If the number
of outstanding requests exceeds a certain thresh-
old, any new requests will be immediately acknowl-
edged back to the Client Library (and, hence, to
the application) as failed. However, if this hap-
pens the queue will not be immediately flushed. If
the queue remains full after a second timer expires,
then the Data Server is declared dead by the Applia-
tion Server, the Command Server is notified of this,
that Data Server’s request queue is flushed, all out-
standing requests from applications are replied to
as failed. From this point, the Application Server
will never send another request to this Data Server,
until the Command Server has notified it that this
Data Server has been returned to duty. Note: Ap-
plications using DI/ODE for I/O must check return
values from their I/O operations, and deal with fail-
ures in a sane fashion.

The Server Daemon is a high-performance request
broker that takes data requests from the network,
applies the path to files as a relative path against a
top level data repository directory, and then acts on
those files in that directory space as requested. The
Server Daemon never initiates a conversation with
any DI/ODE component. As a corollary of this, no
Data Server ever contacts another Data Server.

A program called the Command Server Daemon
runs on the Command Server. It keeps in con-
tact with all the DIO/DE nodes. A text based
administrative interface called csterm runs on the
Command Server communicating requests between
a human administrator and the Command Server
Daemon. The Command Server Daemon listens
to a socket and can therefore is the appropriate
command-and-control interface between other ap-
plications, e.g. automated processes, a GUI, etc.
and the DI/ODE system.

The actions issued by the csterm are turned
into Command Protocol requests and are passed to
Client Daemons, or other sorts of actions (for exam-

ple: rsh data-server-0 reboot) as appropriate.

3 Implementation

Now that we have described what the various
pieces do, we proceed with some details of our im-
plementation.

Our implementation of the File Client Library
is written in C and is thread safe. The only
STDIO/syscall functions that we have not imple-
mented are mmap() and syscall(). There are a
few others that have only partially been imple-
mented. For us to implement mmap() would ei-
ther be brutally complex and negate all the per-
formance advantages of using this call, therefore we
insist that applications not use it. We don’t support
the use of syscall() because that is our mecha-
nism for actually performing local file operations,
so we could not both emulate it and perform lo-
cal file I/0. Some pieces we have not implemented
include fcntl () and lockf () style locking, device
files, and symbolic links. The latter two could be
incorportated, but since our applications don’t re-
quire them, we haven’t bothered. Because we don’t
implement symbolic links, we assign a lexical mean-
ing to the UNIX “..” directory, that is, a path like:
/this/is/a/PATH/../to/a/file is interpreted as
being identical to: /this/is/a/to/a/file. This
simplifies things a great deal for us.

We have also adapted DI/ODE to provide a sim-
ilar interface for the Sleepycat [Olson99] Database.
For the Sleepycat interface, the regular Sleepycat
DB library serves as the Client Library. However,
the application must set up the DB environment to
use RPC as the communications mechanism to the
Database. This feature became available in Sleep-
ycat 3.1.17. The Client Daemon acts as a multi-
plexor for connections from the applications to sev-
eral remote instantiations of the Sleepycat DB. We
stripe the data across multiple back-end Sleepycat
Data Servers in a similar manner as we do for files.
We perform the Consistent Hash function on a por-
tion of the DB key. The patterns for hash match-
ing are stored in the /etc/diode/meteamount. conf
file. [NPC: Guess we should have an example
here.]

Note, that there are significant restrictions on the
operation of this database. First, as of Sleepycat
3.2, while the API is present to perform two-phase
commits using the txn_prepare statement, this is
currently a noop function and there is no way to
recover a failed database in this manner. There-
fore, all transactions, as well as cursor operations



for which ordering is important, must be confined
to a single Sleepycat Data Server. Even more re-
strictive, Sleepycat uses page-level locking and has
no mechanism to detect deadlocks which span mul-
tiple distinct databases. We provide this mechanism
by having the Client Daemon implement timeouts
to the back-end servers, but this is a crude mecha-
nism at best. Applications which deadlock in this
manner often will not be able to achieve reasonable
performance on this system.

As already mentioned, the Client Protocol for
communications between the Client Libraries and
the Client Daemons is just ONC RPC.

The Client Daemon is written in a language called
Erlang [Armst96]. Erlang is a pragmatically func-
tional language that runs in a virtual machine en-
vironment. Although that environment currently
has no mutli-processor support, multiple very light
weight threads (which Erlang calls processes) and
are implemented in the VM using select (). This
restriction is the reason that we provide the capa-
bility for running more than one Client Daemon
on each Application Server. Erlang has some very
powerful features which make its use in this envi-
ronment advantageous. They are better chronicled
in [Fritch00].

For our file Data Protocol, we elected to use NFS.
We made this decision for several reasons. First, the
reasons we felt that we couldn’t use regular kernel
based NFS to solve our data storage problems were
primarily due to deficiencies in and lack of control
we had over NFS clients, a problem we have recti-
fied in DI/ODE. Second, by using NF'S, we wouldn’t
have to build a File Server Daemon to run on the
Data Servers. There exist (a small number of) well
designed, high performance NFS servers out there
that we can leverage. Third, there just aren’t that
many ways to remotely do network equivalents of
read (), write(), etc., and the mechanisms used by
NFS were good enough. By default, we use NFS v3
over UDP, although our code supports NFS v2 as
well as both versions running over TCP.

One problem with NFS is that its locking isn’t
sufficient for our needs. Therefore, the DI/ODE-
ified flock() creates lock files on the File Data
Servers. These files are actually leases which are
kept refreshed transparently by the Client Daemon.
If an application with open locks closes its connec-
tion with the Client Daemon, it knows that it is
safe to delete all that application’s lock files. This
is another case where the fact that we have con-
trol over our NFS client implementation allows us
to overcome one of the protocol’s deficiencies for
these sorts of systems. This is also the reason that

we do not support inode-based locking mechanisms
like lockf () and fcntl() at the present time.

Simply because our applications don’t need them,
there are some NFS commands that we have not
implemented, most notably SYMLINK, MKNOD,
READLINK, and PATHCONF. These would be
easy to add to the Client Daemon, but we have no
compelling reason to at the present time.

The DB Data Protocol is merely an RPC en-
capsulation of the Sleepycat API, and is identical
to the mechanism already implemented in Sleepy-
cat [Sleepy00] except that the Client Daemon pro-
vides a centralized control point for the system as
well as multiplexing features.

On the Server Daemon side, for file I/O one can
use any high-quality NFS server, although these are
rarer than one might at first expect. At the very
least, the server should implement NFS commands
like CREATE, RENAME, REMOVE, and LINK
atomically, or the applications might not perform
correctly.

For the Metadata Server Daemon, we have rewrit-
ten the Sleepycat Database server to better meet
our needs. The one that ships with the Sleepycat
software is designed for debugging, not high perfor-
mance I/0. Consequently the stock server is syn-
chronous, single threaded, and has no capability
to receive requests from multiple clients simultane-
ously. We have threaded the daemon, added signif-
icant buffering, made it asynchronous, and added
other improvements. We are contributing this code
back to Sleepycat so that they can maintain it and
share it with the Internet development community.

One other implementation that’s worth mention-
ing is that we have not implemented any sort of
access control, even a trivial model like Unix users
and groups, into our system. The Client Daemon
“user” owns all the files stored on the File Data
Server, and the Metadata Server Daemon doesn’t
care who sends it requests as long as they come
from an Application Server that is known to the
Command Server. Adding access control would be
straightforward, but we haven’t yet found a need to
do so.

4 Features

It might appear that this system doesn’t have
much going for it over the use of kernel-based NF'S,
JINI, CORBA, or other I/O mechanisms. However,
we think this system has some very compelling ad-
vantages.

First, we believe that the ease of integration of the



DI/ODE system into existing applications is com-
pelling. After updates are made to the Client Li-
brary or Client Daemon we will often test it by link-
ing the system with some familiar applications to see
if they will work unmodified. The GNU fileutils
package is a favorite for this. Of course, neither the
GNU mknod command nor 1n -s will work, but we
don’t consider modifications to our programs to be
acceptable unless a suite of familiar utilities work as
expected through the DI/ODE system.

Second, we believe that with this system we
have better I/O control than other data distribu-
tion mechanisms. For example, kernel-based NFS
clients are overly generic when it comes to process-
ing client requests. They do not provide fine-grained
control over timeouts, don’t use information about
client exiting to assist in data clean up, and send too
many unnecessary events, like LOOKUPs, over the
network. Even more dramatically, for all practical
purposes we can obtain hard mount-like robustness
with failure semantics that don’t cause the machine
to seize whenever an NF'S server becomes temporar-
ily unavailable.

Third, we have a point for centralized monitoring
and control. Since we have a process monitoring the
whole system end-to-end, we can better control the
flow of data to reduce the likelihood and seriousness
of local resource deficiencies in the system.

Fourth, we can perform some interesting data
gymnastics behind the scenes. In the current re-
lease, the most compelling one is our ability to per-
form on-the-fly data migration from one Data Server
to another completely transparently to the applica-
tion. If a Data Server’s I/O or storage capacity is
becoming exhausted, we can add a new Data Server,
inform the Client Daemons, and they will recalcu-
late their hashes for data locations. At this point,
references to the data themselves cause the trans-
fer to occur automatically. Client Daemons in this
state are aware that data may be found in either
location and understand how to deal with data that
might be moved out from under it. At any time, we
can also start a background sweeper process which
walks the data tree on the Data Server locking and
moving data as it pleases.

As one might expect, there are significant restric-
tions on what sorts of file access we can provide dur-
ing migration time. One thing that it’s especially
difficult to deal with is file and directory renaming
during the migration of data from one directory to
another. Therefore, because it’s not required by the
applications we're most concerned with, we do not
allow file and directory renaming to move a file sys-
tem entity out of its original directory. That is, a file

or directory may be renamed in its current parent
directory, but may not be moved to a new parent
directory. Also, to avoid confusion among applica-
tions, we require that an application have a file open
if it is going to rename that file.

The migration process is multiphase. This is so
that there are never points at which I/O is halted.
Data can continue to be stored and retreived as
the system gradually learns about the new location.
The one exception to this is directory renaming,
which is temporarily stalled during a brief migra-
tion period. However, our critical applications do
not need to rename directories themselves, so this
doesn’t concern us.

The data migration scheme used in DI/ODE is
very complex, and we can’t possibly do it justice
here. However, it will be chronicled more thor-
oughly in [GuenthO01].

5 Evaluation

[NPC: Obviously, this section is mostly
predictions now, but will need updating
later.] Overall, our system works quite well. We're
very happy with how easy it is to integrate the
DI/ODE Client Libraries with existing applications.
So far, we feel that has been its strongest point.

The migration mechanism works, but it has its
quirks. Once a migration is started, it must be com-
pleted. There is no mechanism to abort a migration
and back out of the transfer at this time. It might
be nice to have one.

Performance of the system is respectable, but it
could stand some improvement. What we really
need is a way to get data in and out of the Client
Daemon’s Erlang virtual machine without copying
the data across the user/kernel boundary. We have
some ideas on how we might be able to attack this
problem.

6 Future Plans

There are a number of improvements we know
we want to make for DI/ODE. We're considering
whether providing Support for NFS v4 would be
worthwhile or not. NFS v4 has a number of com-
pelling features [Pawlow00] which would be useful
to us, including real in-band locking. However, it’s
an order of magnitude more complex than NFS v3.
Maybe it would be worthwhile to bypass NFS v4
and implement a DAFS [something] client? The
fact that DAFS was designed to be implemented



in user-land, plus the fact that it was designed as a
shared-bus technology makes it compelling. We're
not sure either direction is worth the effort it would
take. Perhaps we should discard NFS altogether
and come up with our own Data Protocol? We're
also considering more DI/ODE Client Libraries. An
ODBC interface is possibly the most compelling.

The biggest area of interest to us are improve-
ments in the form of data redundancy. With control
of the Data Protocol client it is fairly straightfor-
ward to support a redundant Data Network. Even
more intriguing for us is the notion of redundant
Data Servers of all varieties. This is much more dif-
ficult than one might at first think, but we have a
design that we’re itching to implement. The meth-
ods are complex enough, though, that details of its
implementation is more appropriate for a separate

paper.

A third area that we’re interested in is increas-
ing the system’s autonomy by improving the Com-
mand Server’s understanding of the functioning of
the system as a whole. We would like the Command
Server to continue to improve in alerting adminis-
trators to crises, both arrived and impending. As
an extension to this, the system will have a great
deal of data available to it in order to map out its
own resource utilization. It should be possible for
the system to autonomously track an increase in the
consumption of its own resources, and to compute
a best and worst case scenario as to when various
components will need to be upgraded or expanded.

We’d like to improve the performance of the sys-
tem, increasing the number of transactions/second
and bytes/second that can be supported on a given
Application Server. We have some lines of attack
on this problem that we believe will be fruitful, al-
though we’re unlikely to ever be able to completely
reach performance parity with the use of kernel-
based NF'S as an access method.

DI/ODE really uses the Data Network as a shared
bus running IP as the bus protocol. However, there
exist shared bus protocols that are considerably
more efficient, such as the Virtual Interface Archi-
tecture [VI97]. We find these technologies to be very
appealing for our applications.

Other possible interest areas would be to improve
the security of the Data and Command Networks,
and possibly even to try to extend the DI/ODE
framework to make the system workable across a
wide-area network.

7 Conclusion

Gee, I don’t really know what I want to say here.
That’s odd.

8 Acknowledgments

Thanks to our management team all the way up
the ladder for letting us work on cool stuff. We def-
initely will be thanking Linda, Allen, and probably
consulting folks before this is all over.

References

[something] DAFS reference

[Armst96] J. Armstrong, R. Virding, C. Wikstrém,
M. Williams, Concurrent Programming in ER-
LANG, 2nd Ed., Prentice Hall International
(UK) Limited, London, UK, 1996.

[Christ97] N. Christenson, T. Bosserman, D. Beck-
emeyer, A Highly Scalable Electronic Mail Ser-
vice Using Open Systems, Proceedings of the
First USENIX Symposium on Internet Tech-
nologies and Systems, Monterey, CA, 1997,
PP. XX—XX.

[Fritch00] S. Fritchie, J. Larson, N. Christenson,
D. Jones, L. Ohman, Sendmail Meets Er-
lang: Experiences using Erlang for Email Ap-
plications, Proceedings of the Sixth Interna-
tional Erlang/OTP User Conference, Stock-
holm, Sweden, Oct., 2000.

[Guenth01] P. Guenther, N. Christen-
son, S. Fritchie, J. Larson, J. Evans, C. Murray,
Active Data Migration in the DI/ODE System,
To Be Published.

[Horman99] S. Horman, High Capacity Email,
http://wuw.us.vergenet.net/linux/
mail_farm/html/

[Kanger97] D. Kanger, et. al., Consistent Hashing
and Random Trees: Distributed Caching Pro-
tocols for Relieving Hot Spots on the World
Wide Web, Proceedings of the 29th Annual
ACM Symposium on Theory of Computing,
El Paso, TX, May, 1997, pp. 654-663.

[Olson99] M. Olson, K. Bosic, M. Seltzer, Berke-
ley DB, Proceedings of the 1999 USENIX
Annual Technical Conference, Monterey, CA,
June, 1999, pp. xx—xx.



[Pawlow00] B. Pawlowski, et. al., The NFS Version
4 Protocol, 2nd International SANE Confer-
ence, Maastricht, Netherlands, May, 2000.

[Saito99] Y. Saito, B. Bershad, H. Levy, Manage-
ability, Availability and Performance in Porcu-
pine: A Highly Scalable, Cluster-Based Mail
Service, Operating Systems Review, 34(5):1—
15, Dec., 1999.

[Sleepy00] Berkeley DB Reference Guide:
RPC Client/Server. Available at:
http://wuw.sleepycat.com/docs/ref/rpc/
intro.html

[VI97] Virtual Interface Architecture Specification,
Version 1.0, December 16, 1997. Available at
http://www.viarch.org/html/Spec/
vi_specification version_10.htm



