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Abstract

This document no longer describes anything Sendmail, Inc. is working on, and not by modification
of the document.
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Chapter 1

Overview

1.1 Purpose of This Document

This document describes the design of the Distributed I/O Development Environment (DI/ODE)
I/O system implemented for the Boardwalk project. This document is mainly meant for developers
who will be working with the code, but it will also be useful for QA when doing white-box testing.
It can also be used to assess the feasibility of using DI/ODE technology for other projects.

1.2 DI/ODE Goals and Features

DI/ODE is an architecture for adopting conventional applications to work in a scalable, reliable
cluster setting. It provides an interface to existing applications with the following goals:

• Minimal modification to the existing application(s)

• Arbitrary horizontal scalability

• On-the-fly expansion and contraction of the storage capacity and bandwidth

• Centralized management of the distributed system

• Provide a redundant network path between the servers on which the applications run and on
which the data are stored

• Provide redundant data storage

The last two goals are not met in this release of the DI/ODE software, but the present release
supports a straightforward path to implement them in the future.

1.2.1 Interfaces

DI/ODE integrates into existing applications by using standard API’s, although with some nonstan-
dard restrictions and semantics.

File I/O

DI/ODE presents a set of file hierarchies to the application, much as if they were mounted into the
filesystem. However, this mounting happens at the application level rather than the kernel level.
DI/ODE accomplishes this by intercepting the standard file I/O API for an application that it is

2
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linked with. It emulates most of the I/O system calls (e.g., read(), write(), etc..) and most of
the system Standard I/O library (e.g., fprintf(), fseek(), mktmp(), etc.). If those operations are
performed on a file in the emulated region of the system’s file namespace, the DI/ODE system
handles them. Otherwise, the underlying standard file system calls are invoked.

DI/ODE file storage resides on a set of Data Servers. This set can be expanded or contracted
on-the-fly. When this is done, the data stored on these machines will be redistributed to balance the
load using a process we call Data Migration. The Data Migration process is explained in detail in
Chapter 7.

Sleepycat I/O

DI/ODE also presents a database service, using the Sleepycat DB API. Taking advantage of Sleep-
ycat’s RPC facility and a multiplexer of our own design, we allow a set of back-end DB servers
to appear as a single huge database. The Sleepycat I/O system is also capable of on-the-fly data
migration This process is described in Chapter 8.

1.2.2 Data Striping

For both the file and Sleepycat storage, DI/ODE transparently stripes the data across a set of back-
end storage resources. This allows the illusion of a single huge storage system. Rather than using a
centralized registry, the back-end location of each datum stored is determined algorithmically. We
expect the Law of Large Numbers to ensure that the data distribution will be sufficiently smooth.

1.2.3 Data Migration

Unlike other transparent striping mechanisms, DI/ODE allows the administrator to add or remove
back-end storage servers while the system is running. The storage load will automatically re-balance
across the new set of back-end storage servers. This process is called migration and is detailed in
Chapter 7 and Chapter 8.

1.2.4 Redundancy

In the future, we will have redundancy of system components sufficient to ensure that the system
has no single point of failure.

Data Network redundancy, that is, having multiple network paths between the Access Servers
and the Data and Metadata Servers, is not implemented as a feature in the Boardwalk release of
DI/ODE. It would be possible to add this feature in a minor revision number of a successive release
of DI/ODE if it became a priority to do so.

Data redundancy is not implemented as a feature in the Boardwalk release of DI/ODE. Adding
this feature requires significant rework of key DI/ODE components. In any release where this feature
is added, it will be the major thrust of that release, perhaps excluding all other feature additions.
Therefore, a DI/ODE version with redundancy will have a new major release number associated
with it. It could be implemented as the key feature for version 2.0 if that were the top priority.

1.3 Cluster Architecture

Figure 1.1 illustrates the roles of various hosts in a DI/ODE cluster. Each machine in the figure has
a specific role.
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1.3.1 Access Server

The Access Servers run applications linked with the Client Library or Sleepycat Library with the
DB Environment set to connect to a remote server via RPC. Also running on the Access Server is
the Client Daemon.

1.3.2 Data Server

The internal interfaces to the Data Server are NFS v3. The Client Daemons speak NFS v3 over
UDP to the Data Servers and transfer file state to and from them via this protocol. The Command
Server speaks NFS v3, also over UDP, to the Data Servers. The “/” partition of each Data Server
is NFS mounted on the Command Server, and changes to the configuration of each Data Server are
made by modifying the representation of that file on the Command Server.

1.3.3 Metadata Server

The Metadata Server is a UNIX based server with a daemon that receives requests from the Client
Daemons on the Access Servers via the Sleepycat DB/RPC protocol. The Metadata Server Daemon
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unwraps the DB calls and applies them against the DB environments which are stored locally.

1.3.4 Command Server

A Command Server node in the system coordinates the work of all the Client Daemons and controls
their state transitions as they perform migrations. It is also the monitoring and reporting center of
the DI/ODE system. The Command Server is not critical for normal operation.

1.4 Software Architecture

The DI/ODE software components and their interactions are illustrated in Figure 1.2.

1.4.1 Client Library

The Client Library turns standard file I/O calls into RPC requests to the Client Daemon. The Client
Library is written in C and is thread-safe.

The Client Library intercepts the standard file I/O API for an application that it is linked with.
It emulates most of the I/O system calls (e.g., read(), write(), etc..) and most of the system
Standard I/O library (e.g., fprintf(), fseek(), mktmp(), etc.). If those operations are performed
on a file in the DI/ODE controlled region of the system’s file namespace, then the Client Library
turns these into ONC RPC requests and sends them to the Client Daemon for processing. If those
operations are performed on a file in the portions of the file system the local operating system is
responsible for, then the Client Library falls through to their locally defined behavior. In this way,
a read(), operating on a file that resides on a Data Server will get turned into a Client Daemon
request sent to the appropriate Data Server, while the same read() operating on a file local to the
system (for example, /etc/motd) will operate directly on that file as if the Client Library were not
linked in with that application.

More than one Client Daemon may run on any Access Server. The Client Library will select which
one to contact, attempting to balance the load over each possible Client Daemon. The mechanism
by which this happens is described in Section 3.1.5.
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Similar in function to the Client Library, we will use the Sleepycat Berkeley DB library configured
as an RPC client to connect to the Client Daemon as an RPC server. The Client Library will intercept
calls to the Sleepycat DBENV→set server() method and redirect it to create an RPC connection
with one of the Access Server’s Client Daemons.

1.4.2 Client Daemon

The Client Daemon more than any other piece exemplifies the DI/ODE system. One or more Client
Daemons run on each Access Server. Applications linked against the Client Library will send I/O
requests, both file and Sleepycat DB, through the Client Daemon(s) which will route them to the
appropriate Data Server or Metadata Server.

The connections between the Client Library and the Client Daemon all carry ONC RPC, via
either a TCP stream over the loopback interface or a Unix domain stream socket within the file
system. The RPC protocols used for carrying file I/O and Sleepycat DB over these connections are
described in Chapter 2. Separate connections are used to carry the two RPC protocols.

The connections between the Client Daemon and the Data Servers are all NFS v3 [CPS95]
running over UDP. The connections between the Client Daemon and the Metadata Servers are TCP
streams carrying the same Sleepycat DB/RPC protocol as above.

The Client Daemon is written entirely in Erlang [AVWkW96]. Since Erlang does not currently
have SMP support, this is the reason one may wish to run several Client Daemons on a single
multi-processor Access Servers. We do not know what the ideal number of Client Daemons should
be run on an Access Server. The optimal number of will depend on several factors, including which
application(s) the Access Server runs. Future development in the Erlang language may solve this
problem and enable a single Client Daemon to take advantage of multiple processors.

A Client Daemon also runs on the Command Server. The Command Server also runs the Erlang
shell which controls and monitors the Client Daemons running on the Access Servers. It uses Erlang’s
native inter-node message passing mechanism to remotely execute commands and pass data from
the Access Servers to the Command Server. The API for this interaction is detailed in Chapter 6.

1.4.3 Data Server Daemon

The Data Server Daemon is the NFS implementation built into the kernel of the Data Server. We
require no special modifications or accesses to this process.

1.4.4 Metadata Server Daemon

The Metadata Server Daemon is a piece of software written by Sendmail Engineers to receive,
process, and reply to DB/RPC requests from the network with a high level of concurrency and low
latency. We expect the Metadata Server Daemon to be incorporated into Sleepycat’s DB product in
future releases, and maintained and developed by them.

1.4.5 Command Server Shell

A Client Daemon also runs on the Command Server to process administrative requests against the
Data and Metadata Servers. Administrative utilities that affect the data acted upon by applications
on the Access Servers can be run here in an automated or manual fashion. A special process, called
the Command Server Shell, or csterm, also runs on the Command Server. It receives data from and
provides state updates to the Client Daemons as they run on each Access Server.



Chapter 2

Client Protocol

This chapter describes the protocols spoken between the DI/ODE Client Library, which is linked
with the applications, and the DI/ODE Client Daemon While these protocols are intended to link
two processes on a single host, there is nothing preventing them being used between different hosts.

2.1 File Client Protocol

2.1.1 Design Philosophy

The file protocol is designed to mimic as closely as possible the traditional UNIX file-related system
calls. This is for several reasons:

• by putting most of the state on the DI/ODE Client Daemon side of the connection, we enable
faithful emulation of UNIX semantics for shared files after a fork() and the preservation of
descriptor information after an execve().

• keeping state on the Client Daemon side also allows it to take advantage of its state knowledge
during a migration;

• the UNIX kernel provides an architecture model with well known structure.

2.1.2 Synopsis

Table 2.1 gives a synopsis of the protocol. Though it will be defined in the ONC/RPC syntax, and
the resulting description fed to code-generating tools, the RPC syntax is not the most readable
format. (The full RPC definition is given in Appendix A.)

The argument and return fields may be of the following types:

void The call takes no arguments.

mntindex An unsigned integer representing a mount point. Zero represents the process’s current
working directory.

pathblob A structure containing a mntindex and a string specifying a file or directory path name
relative to the mntindex’s location.

mountentry A structure containing the absolute path of a DI/ODE mount point and that mount
point’s mntindex.

7
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Procedure Arguments Results

open pathblob, flags, mode, fid status
close fid status
read fid, nbytes status, data
write fid, data status, nbytes
pread fid, nbytes, offset status, data
pwrite fid, data, offset status, nbytes
seek fid, offset, whence status, offset
delete pathblob status
rename pathblob, pathblob status
link pathblob, pathblob status
mkdir pathblob, mode status
rmdir pathblob status
setattr pathblob, sattr status, fattr
stat pathblob status, fattr
fstat fid status, fattr
fsetattr fid, sattr status, fattr
fstatfs fid status, fsstats
statfs pathblob status, fsstats
fdirlist fid status, offset, direntries...
flock fid, flockop status
fiddump void status, procflags, fids...
setsessid sessid, opaque status, sessid, oldopaque
forksess sessid status
listmounts void status, mountentry...
resolv pathblob status, pathblob
dup2 fid, fid status
chdir pathblob status, mntindex
fchdir fid status, mntindex
pathconf pathblob, pathconfop status, value
fpathconf fid, pathconfop status, value
fsync fid, offset, nbytes status
getflags fid, flagop status, flags
setflags fid, flagop, flags status
setuid uid status
setgid gid status
setgroups gid... status

Table 2.1: DI/ODE File Protocol
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flags An unsigned 32-bit integer holding flags corresponding to those of the open() and fcntl()

system calls.

mode An unsigned 32-bit integer holding the permission mode bits, as in the chmod() system call,
for a newly-created file or directory.

fid An unsigned 32-bit integer holding the descriptor number of an open file or directory, presumably
matching the application-level descriptor.

nbytes An unsigned 32-bit integer holding the size of a read request or returning the number of
bytes written in a write request.

data A block of up to 4GB (232 − 1 bytes) holding data to be written, or data returned from a read.

offset A signed 64-bit integer holding an offset within a file.

whence An enumeration describing whether the seek is relative the the beginning or end of the file,
or the current offset.

sattr A structure holding the settable attributes of a file or directory, comprising:

whichset A bitmap indicating which of the following fields are being set in this call.

mode As above.

uid An unsigned 32-bit integer, holding the user ID.

gid An unsigned 32-bit integer, holding the group ID.

size An unsigned 64-bit integer, holding the file size.

atime The time of last access.

mtime The time of last file modification.

sessid An structure that must be unique and deterministic for a given Client Library instance. This
is opaque to the Client Daemon and is currently expected to consist of:

host A string giving a hostname.

pid An unsigned 32-bit integer giving a unique process ID.

This structure is used in several protocol operations in conjunction with a fork() or execve()
by the application.

opaque and oldopaque Data to be preserved in the Client Daemon across execve() calls in the
client. The setsessid call returns the data set by the previous call. Currently, this is used to
pass to the new image of the Client Library the number of the file descriptor of the previous
image’s connection to the Client Daemon.

procflags Random bits that the Client Daemon knows about a process that the process won’t
know when it starts up. Right now that is a single bit, DIODE FIDDUMP REMOTE CWD, indi-
cating whether the process’s current working directory is under a DI/ODE mount point. This
bits are copied to the new session created by a forksess call.

status A signed 32-bit return code. If the value is nonzero, then the protocol operation may not
return any other values.

fattr A structure holding file or directory attributes, comprising:

type An enumeration, saying whether this is a file or directory.
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mode The permissions of the file or directory, as above.

nlink The number of links to this file or directory. At this time we are not sure whether
the link count for directories will follow the normal UNIX semantics of being equal
to two more than the number of subdirectories.

uid User ID, as above.

gid Group ID, as above.

atime Last access time, as above.

mtime Last modification time, as above.

ctime Time of last modification of file attributes.

rdev1 The first word of file type specific info.

rdev2 The second word of file type specific info.

dev The file system ID.

ino The file inode number.

size File size, as above.

used The actual number of bytes used by the file.

blksize The suggested unit of transfer, in bytes.

The last five members are unsigned 64-bit integers. All other members are unsigned 32-bit
integers.

fsstats File system statistics, comprising:

tbytes Total size, in bytes.

fbytes Free space, in bytes.

abytes Free space available to current user, in bytes.

tfiles Total number of nodes on filesystem.

ffiles Free nodes available.

afiles Available nodes.

These are all unsigned 64-bit integers.

direntry A structure describing a directory entry, comprising:

ino A 64-bit number, corresponding to the inode.

name A string giving the directory entry name.

flockop An enumeration specifying whether this is a lock, unlock, or test lock request.

pathconfop An enumeration specifying which path configuration setting is being checked.

flagop An enumeration specifying whether the file status flags (O RDWR, etc) or file descriptor (close-
on-exec) flag is being retrieved or set.

uid An unsigned 32-bit integer, holding the user ID.

gid An unsigned 32-bit integer, holding the group ID.
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This protocol differs from the UNIX system call API in a couple ways. In particular, the client
specifies the file descriptor in the open call, and there is no dup call, only dup2. This follows the
decision, explained in the next chapter, to allow the Client Library to control descriptor assignment.
Therefore, it is up to the client to specify unique descriptors in the protocol. Attempts to open an
already open descriptor should generate a DIODE ERR BADF error.

Unlike the UNIX readdir() or getdents() functions, the fdirlist call returns the names of
all the items in the open directory and not an incremental portion of them. This simplifies the Client
Daemon’s handling of directories that are stored across more than one backend Data Server, whether
for redundancy or stripping. The fdirlist call also returns the current file offset, as set by the seek
call. This lets the Client Library support calls to seekdir() that occur before any directory entries
are read.

Also, file and directory paths are expressed in the Client Protocol by combining a mount point,
indicated by index, and a path relative to that point. Paths relative to the process’s current working
directory are expressed by using a mount index of zero.

By default, it is an error to pass a relative path in a Client Protocol call and the
DIODE ERR NO CURRENT DIR status should be returned. However, sending a fchdir request or a chdir
request with a non-empty path sets the directory from which relative paths should be resolved and
sets the DIODE FIDDUMP REMOTE CWD bit in the procflags returned by the fiddump call. A chdir

request with an empty path and any mntindex clears that bit and makes it an error again to pass a
relative path.

Due to limitations in the current Erlang RPC implementation, in this iteration of the DI/ODE
Client Protocol, we will use the null authentication flavor, AUTH NONE, and pass information regarding
user and group IDs to the Client Daemon via separate RPC procedures. The Client Daemon is
expected to use the information so obtained to generate authentication credentials for its connections
to the Data Servers.

2.1.3 Connection Setup

New RPC connections are opened in two cases: during a fork(), and during initialization of the
Client Library after an exec(). In the former case, the first call made on the connection must be
forksess, to form a new session and duplicate the file descriptor state. That must be followed by
a setsessid call to ‘name’ the session and save the connection specific opaque data in the Client
Daemon.

In the case of an exec(), the first call made must be setsessid. This either reestablishes the
association of the process’s RPC connection to the previous process image’s session, or creates and
names a new session. If there was a previous session then the next call on this connection should
be fiddump to finish the transfer of previous state from Client Daemon to Client Library. Finally,
the Client Library must initialize its table of mount points and mount indexes by making the
listmounts call, and set the correct authorization information in the Client Daemon by making the
setuid, setgid, and setgroups calls.

2.1.4 Symbolic Links

This revision of the Client Protocol does not support symbolic links. In particular, it lacks that
RPC procedures to handle readlink() and symlink(), and the ‘ell’ calls (lstat(), lchown(),
lxstat(), and lutimes()). Note that this is a separate (and simpler) issue from that of symbolic
links in the local filesystem that point ‘into’ diode-space. Those are an issue for the Client Library
only. Limitations on them are considered in Section 3.1.3.
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2.1.5 Status Codes

The following status codes will be used for the status field in the protocol:

DIODE OK The operation was successful. If the status is not DIODE OK, then no other arguments will
be returned.

DIODE ERR ROOT One or more of the pathblob arguments specified in the call resolved to a location
outside of the DI/ODE mount point that it started under. The Client Library should call
resolv on each path passed in the call and restart its the processing. If this status is returned
then at least one of the paths used in the call must generate a DIODE OK status when passed
to the resolv call.

DIODE ERR NEW SESSID A setsessid call was made that specified an unknown sessid value. A new
session has been created. This status may not be returned by any other call.

DIODE ERR LOOP Too many symlinks were encountered while processing a path so the Client Daemon
gave up. In this revision of the Client Protocol this status will be returned when any symlinks
are encountered by the Client Daemon, i.e., the “number considered to be too many” will be
one.

DIODE ERR STILL REMOTE A path was passed to the resolv call that when processed did not leave
the mount point it started under. This status may not be returned by any other call.

DIODE ERR BADF An operation was requested on an invalid fid. The Client Library and Client Dae-
mon are out of sync.

DIODE ERR NO CURRENT DIR A relative path was passed, but this session does not currently have set
a current working directory.

DIODE ERR AGAIN An attempt to lock a file failed because the file was already locked. This status
may only be returned by the flock call.

DIODE ERR PERM This error code and the following are lifted directly from the NFSv3 specification
([CPS95]) and should be interpreted as described there.

DIODE ERR NOENT

DIODE ERR IO

DIODE ERR NXIO

DIODE ERR ACCES

DIODE ERR EXIST

DIODE ERR XDEV

DIODE ERR NODEV

DIODE ERR NOTDIR

DIODE ERR ISDIR

DIODE ERR INVAL

DIODE ERR FBIG

DIODE ERR NOSPC
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DIODE ERR ROFS

DIODE ERR MLINK

DIODE ERR NAMETOOLONG

DIODE ERR NOTEMPTY

DIODE ERR DQUOT

DIODE ERR STALE

DIODE ERR REMOTE

If a status is returned that is not in the above list then the behavior of the Client Library is
undefined. The initial implementation will panic and call abort().

2.2 Sleepycat RPC Protocol

Starting with version 3.1.14, the Sleepycat DB package has included its own RPC protocol for using a
remote database server [Sof00]. We have extended the original protocol to support the direct locking
calls. Like our file protocol, this protocol is designed so that the client-side does the minimal amount
of work to package the function call and ship it across the wire. No significant semantic changes are
done on the client-side. The protocol is summarized in Table 2.2.

The argument and return fields may be of the following types:

envid, dbid, txnid, parent-txn, and curid The client-side IDs for the actual server-side handles, given
as 32-bit unsigned integers.

key-args and data-args “Database Thangs”: DBT structures used to pass key and data values to the
server. Includes flags and partial request fields.

keydata and datadata Variable length byte-strings, returned from the server for some, but not all
get and put messages. Whether these are returned depends on the flags passed with that call
and the type of the underlying database.

obj-args A variable length byte-string, currently passed as a DBT with the extra fields ignored by the
server, that describes the object being locked.

lock A DB LOCK structure, passed as an opaque byte string (DB LOCK structures are not for inter-
pretation outside of the Sleepycat library itself). Note the exact size of the DB LOCK structure
structure depends on the size of the size t type and is therefore platform dependent.

mode An unsigned 32-bit integer holding the permission mode bits, as in the chmod() system call,
for a newly-created database.

lockmode The type of lock being requested. The meaning of a given lock mode is implied by the lock
conflict matrix currently in use by the environment.

lockmodes The number of different lock types that are supported by the new lock conflict matrix.

conflicts A lock conflict matrix, passed as a byte string whose length is the square of the lockmodes
value.

req-array A variable length array of lock requests. There are four types of request:

DB LOCK GET Get a lock, as specified by included mode and obj items.
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Procedure Arguments Results

env cachesize envid, gbytes, bytes, ncache status
env close envid, flags status
env create timeout status, envid
set lk conflict envid, conflicts, lockmodes status
set lk detect envid, detect status
set lk max envid, max status
env open envid, home, flags, lockmode status
env remove envid, home, flags status
txn abort txnid status
txn begin envid, parent-txn, flags status, txnid, real-txnid
txn checkpoint envid, kbyte, min, flags status
txn commit txnid, flags status
txn prepare txnid status
db bt maxkey dbid, maxkey status
db bt minkey dbid, minkey status
db close dbid, flags status
db create envid, flags status, dbid
db del dbid, txnid, key-args, flags status
db flags dbid, flags status
db get dbid, txnid, key-args, data-args, flags status, keydata, datadata
db h ffactor dbid, ffactor status
db h nelem dbid, nelem status
db key range dbid, txnid, key-args, flags status, less, equal, greater
db lorder dbid, lorder status
db open dbid, name, subdb, type, flags, mode status, type, dbflags
db pagesize dbid, pagesize status
db put dbid, txnid, key-args, data-args, flags status, keydata
db re delim dbid, delim status
db re len dbid, len status
db re pad dbid, pad status
db remove dbid, name, subdb, flags status
db rename dbid, name, subdb, newname, flags status
db stat dbid, flags status, entlist
db swapped dbid status
db sync dbid, flags status
db cursor dbid, txnid, flags status, curid
db join dbid, curlist, flags status, curid
dbc close curid status
dbc count curid, flags status, dupcount
dbc del curid, flags status
dbc dup curid, flags status, curid
dbc get curid, key-args, data-args, flags status, keydata, datadata
dbc put curid, key-args, data-args, flags status, keydata
lock detect envid, flags, atype status, aborted
lock get envid, locker, flags, obj-args, lockmode status, lock
lock id envid status, id
lock put envid, lock status
lock stat envid status, entlist
lock vec envid, locker, flags, req-array status, locklist

Table 2.2: Sleepycat RPC Protocol
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DB LOCK PUT Release a lock, specified by an included lock item.

DB LOCK PUT OBJ Release all locks on a specified object, passed via an obj item.

DB LOCK PUT ALL Release all locks held by this locker.

locklist A list of lock items obtained by DB LOCK GET requests.

entlist A statistics array, returned as a list of unsigned 32-bit integers.

real-txnid The internal server-side ID of the transaction. This can be used to associate lock requests
with particular transactions. (This capability is not used by our current expected set of appli-
cations, and is not fully supported by the Sleepycat client-side library. Further work involving
this is under evaluation by Sleepycat.)

id A new unique locker ID.

status A status code, passed as a signed 32-bit integer. Zero is success, while negative values have
special meaning in the Sleepycat DB context. Positive values are errno values directly from
the server. Note that this is a platform specific encoding.

curslist A list of cursor ID numbers.

home, name, subdb, and newname Character string specifying, respectively, the last component of
the home directory of an environment, the name of a database file, the name of a sub-database,
and the new name for either a database file or a contained sub-database.

dbflags The internal flags associated with a newly opened database. (This is provided strictly for
use by the TCL extension.)

All the other items are signed or unsigned 32-bit integers, matching exactly to the argument of
the same name in the original Sleepycat call.



Chapter 3

Application-Side Libraries

3.1 File Client Library

3.1.1 Interface Styles

The Client Library is a collection of functions which make it possible for applications to perform I/O
both to DI/ODE Data Servers as well as local file systems with minimal source code modification.
It provides functions which mimic the standard UNIX file I/O system call functionality of open(),
read(), write(), lseek(), close(), et al.

Ideally, an application need only be linked with the Client Library in order to access DI/ODE
Data Servers. Doing so requires some platform specific code in the Client Library in order to handle
a simple problem: if the Client Library contains a function called open(), how does one then call the
underlying open() for local file system operations? To complicate the matter, on many platforms the
Pthread library contains wrappers around many I/O system calls that implement cancellation points
or otherwise make them suitable for use by multi-threaded applications. These wrappers would be
inaccessible if the Client Library were to näıvely invoke system calls via syscall().

Previous versions of the Client Library have attempted to solve this problem by taking advantage
of a detail in the construction of of libc and libpthread. On all platforms used to date (Solaris,
FreeBSD, and Linux), the functions in libc, such as open(), are actually implemented by open().
Libc then contains a “weak symbol” which tells the linker to resolve open() calls to open() if
open() isn’t defined “strongly” elsewhere (such as in libpthread. The Client Library would take
advantage of this construction just as libpthread does, calling the internal symbol when a local
operation is needed.

Unfortunately, this overriding of symbols removes the Pthread library from the loop, thereby
breaking certain expected semantics. We have therefore implemented a style of symbol override that
relies on the dynamic linker to provide the necessary information for completing local calls. At least
on platforms that use the ELF binary format, the dlsym() function, when passed the constant
RTLD NEXT for its handle argument, will return the ‘next’ definition of the specified symbol. As
part of its initialization, the Client Library calls dlsym() for each function that it needs to extend,
caching the pointer to the underlying implementation that is returned.

Using this, we may even be able to provide wrappers for the internal symbols, such as open().
Doing so would eliminate problems with using the STDIO component of libc—on all the platforms
that we have tested on, STDIO uses the internal symbols (e.g., open()) rather than their corre-
sponding weak symbol names (e.g., open). However, this may prove to be unworkable if the Pthread
library uses those same symbols when it intercepts system calls. For example, the implementation
of fopen() in found in libc and the implementation of open() found in libpthread.so may both
directly invoke the function/symbol open. If so, then the Client Library implementation of open

16
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would need to meet the union of the requirements of both those calls. Specifically, it would be need
to be both async-cancel-safe and async-signal-safe (see also the Solaris 2 attributes(5) manpage
for details of those terms).

If the interception of internal symbols proves to be impractical, then the Client Library will
also need to provide implementations for all functions in libc that use the internal symbols. In
particular, the Client Library may need to include implementations of the POSIX directory functions
(opendir(), readdir(), etc) and the ISO C STDIO functions (fopen(), printf(), etc). If this
happens, we plan on using the STDIO implementation found in the SFIO library released by AT&T.

One ‘gotcha’ that we will have to check for is whether this method creates a restriction on the
link order for applications. In particular, it may turn out that the Client Library must appear before
libpthread in the link command.

Implementations of previous versions of the Client Library have been successfully linked again the
following applications and thereby accessed files stored on DI/ODE Data Servers. Unless specified,
the only modifications required have been to include the Client Library and SFIO library in the final
executable linking phases.

GNU tar Version 1.13. No source code modifications are required. Limits on file descriptor dupli-
cating renders use of the -z flag unusable when the source file is stored on a Data Server. It
is expected that this limitation does not apply to the version of the Client Library and Client
Protocol described in this document.

GNU fileutils Version 4.0. No source code modifications are required. Since the Client Protocol
does not implement NFS symbolic link and special file operations, ln -s, mkfifo, and mknod

do not currently work.

sendmail Version 8.11.1. No application source code modifications appear required, though its
feature set has not been thoroughly tested yet.

qmail Version 1.03. Due to its dependence on file descriptor copying, a couple of hacks are required
to copy data from Data Servers to local disk prior to certain operations. The patch affects
roughly 100 lines of code. Qmail’s operation has only been lightly tested: testing so far has
been at a proof-of-concept level. Again, it is expected that this limitation does not apply to
the version of the Client Library and Client Protocol described in this document.

3.1.2 Supported System Calls

The Client Library provides most of the semantics provided by the UNIX file I/O system calls.
When used on files in local file systems, the Client Library uses the underlying operating system’s

function, as provided by either libc or libpthread and accessed via dlsym(). When the operation
is on a file stored on a Data Server, the operation is converted to a Command Protocol operation
and invoked in the Client Daemon via an ONC RPC call.

The list of UNIX file I/O system calls and libc functions that are always intercepted by the
Client Library can be found in Table 3.1.

Additional calls that may be intercepted on some platforms can be found in Table 3.2. Specifically,
the following additional calls will be intercepted under Solaris: fstatvfs(), getdents(), statvfs(),
fxstat(), lxstat(), and xstat(). The functions fxstat(), lxstat(), and xstat() provide
binary support for previous versions of struct stat. We expect to only provide support for the
current version of struct stat for files under DI/ODE mount points.

Some platforms define separate ‘large file’ functions that use 64-bit types. While we don’t cur-
rently feel the need to support the entire large file interface, we have avoided creating any obstacles
to doing so beyond the extra effort needed. The Client Protocol itself matches NFSv3 by using
64-bit types for many fields. There are three ‘large file’ functions that we may implement regardless:
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getdents64(), lstat64(), and stat64(). Commands like ls use these to safely walk and examine
file trees.

The use of other platform specific file system related calls on DI/ODE file space is not supported.
For example, we do not support use of the ustat() or realpath() systems calls on DI/ODE ‘devices’
or filenames.

We do not currently plan to support the SPARC V9 (LP64) environment under Solaris.

We would prefer to not implement the directory handling functions, closedir(), opendir(),
readdir(), readdir r(), rewinddir(), seekdir(), and telldir(), and instead continue to use
the versions in libc. As long as our implementations of the getdents() and getdirentries()

functions are complete, this should Just Work. If problems arise during development then we may
simply fall back to intercepting the directory handling functions in the Client Library.

While the Client Protocol at this time does not directly support symbolic links beneath DI/ODE
mount points, the Client Library still intercepts all symlink related calls. How it handles each one
is described below.

We do not currently plan to support applications that expect to be able to access files beneath
DI/ODE mount points after calling chroot() or fchroot()

3.1.3 Path Canonicalization

The Client Library must canonicalize all paths in order to determine whether they specify objects in
a local file system or on a remote DI/ODE Data Server. The canonicalization process has to handle
three types of paths: absolute paths, paths relative to directories in the local file systems, and paths
relative to directories beneath DI/ODE mount points.

This DI/ODE specifically does not support either symbolic links within the diode-space in any
form, or symbolic links outside of diode-space that point into it. Supporting such accesses would
require either that the Client Library perform full kernel-like path canonicalization, including calling
lstat() on each component, or that the kernel provide better hooks for user-level path processing.
The realpath() function, as implemented in both BSD 4.4 and Solaris, while tantalizing, is not
sufficient. Attempts to resolve through non-existent path components, such as anything beneath a
DI/ODE mount point in the local file system, generate an error without returning any information
about what had so far been resolved.

On the other hand, we can support accesses through symlinks in the local file system that resolve
to other locations in the local file system without going beneath a DI/ODE mount point. All it takes
is for use to use the uncanonicalized path whenever we actually perform an operation on a local
object. The canonicalization process tells us whether we need to redirect the operation over the
Client Protocol and, if so, what path to uses there. It does not change the path used for local
operations.

To canonicalize an absolute path, the Client Library considers each component in turn, compar-
ing the path so far against the list of DI/ODE mount points listed in /etc/diode/paths.conf. A
component of “.” is dropped, while a component of “..” is removed along with the previous com-
ponent. If a “..” component is encountered when there is no previous component, then it is simply
dropped. As soon as the Client Library finds a match, the rest of the path is passed to the Client
Daemon without further changes. If the entire path is canonicalized without matching a DI/ODE
mount point, then the path must be local and the original path is passed to the underlying system
call.

If the process’s current working directory is not beneath a DI/ODE mount point and a relative
path is to be processed by the Client Library, then the Client Library will append it to the path
to the process’s current working directory, as obtained via the getcwd() function, and resolve it
as an absolute path. The result of the getcwd() call may be cached between calls to chdir() or
fchdir(). There may be opportunities for optimizing this process further.
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File API Prototypes Client Protocol call
int access(const char *path, int mode) stat

int chdir(const char *path) chdir

int chmod(const char *path, mode t mode) setattr

int chown(const char *path, uid t owner, gid t group) setattr

int close(int fd) close

int creat(const char *path, mode t mode) open

int dup(int fd) dup2

int dup2(int oldd, int newd) dup2

int ‡execve(const char *path, char *const argv[], char *const envp[]) -

int fchdir(int fd) fchdir

int fchmod(int fd, mode t mode) fsetattr

int fchown(int fd, uid t owner, gid t group) fsetattr

int fcntl(int fd, int cmd, ...) getflags, setflags

int flock(int fd, int op) flock

pid t fork(void) forksess

long fpathconf(int fd, int name) fpathconf

int fstat(int fd, struct stat *sb) fstat

int fsync(int fd) fsync

int ftruncate(int fd, off t length) fsetattr

int †lchown(const char *path, uid t owner, gid t group) †setattr
int link(const char *old, const char *new) link

off t lseek(int fd, off t offset, int whence) seek

int †lstat(const char *path, struct stat *sb) †stat
int mkdir(const char *path, mode t mode) mkdir

int open(const char *path, int flags, ...) open

long pathconf(const char *path, int name) pathconf

ssize t pread(int fd, void *buf, size t nbytes, off t offset) pread

ssize t pwrite(int fd, const void *buf, size t nbytes, off t offset) pwrite

ssize t read(int fd, void * buf, size t bytes) read

int readlink(const char *path, char *buf, size t bufsize) returns EINVAL

ssize t readv(int fd, const struct iovec *iov, int iovcnt) read

int rename(const char *old, const char *new) rename

int rmdir(const char *path) rmdir

int setegid(gid t gid) setgid

int seteuid(uid t uid) setuid

int setgid(gid t gid) setgid

int ‡setgroups(int ngroups, const gid t *grouplist) setgroups

int setuid(uid t uid) setuid

int ‡setregid(gid t rgid, gid t egid) setgid

int ‡setreuid(uid t ruid, uid t euid) setuid

int stat(const char *path, struct stat *sb) stat

int symlink(const char *name1, const char *name2) returns ENOSYS

int truncate(const char *path, off t length) setattr

mode t umask(mode t numask) -

int unlink(const char *path) unlink

int utime(const char *path, const struct utimbuf *timep) setattr

int utimes(const char *path, const struct timeval *timep) setattr

ssize t write(int fd, const void *buf, size t bytes) write

ssize t writev(int fd, const struct iovec *iov, int iovcnt) write

Table 3.1: DI/ODE File API and Protocol Mapping—OS Independent Calls
† Symbolic link semantics are disabled for these calls

‡ The signatures for these functions vary from platform to platform. The table shows the types
appropriate for Solaris 7.
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File API Prototypes Client Protocol call
int fstatvfs(int fd, struct statvfs *buf) fstatfs

int ‡getdents(int fd, struct dirent *buf, size t nbytes) fdirlist

int statvfs(const char *path, struct statvfs *buf) statfs

int fxstat(int version, int fd, struct stat *sb) fstat

int † lxstat(int version, const char *path, struct stat *sb) †stat
int xstat(int version, const char *path, struct stat *sb) stat

int fstatfs(int fd, struct statfs *buf) fstatfs

int futimes(int fd, const struct timeval *timep) fsetattr

int getdents(int fd, char *buf, int nbytes) fdirlist

int getdirentries(int fd, char *buf, int nbytes, long *basep) fdirlist

int †lutimes(const char *path, const struct timeval *timep) †setattr
int statfs(const char *path, struct statfs *buf) statfs

ssize t preadv(int fd, const struct iovec *iov, int iovcnt, off t offset) pread

ssize t pwritev(int fd, const struct iovec *iov, int iovcnt, off t offset) pwrite

Table 3.2: DI/ODE File API and Protocol Mapping—OS Dependent Calls
† Symbolic link semantics are disabled for these calls ‡ The signatures for these functions vary

from platform to platform. The table shows the types appropriate for Solaris 7.

If the process’s current working directory is beneath a DI/ODE mount point and a relative path
is to be processed by the Client Library, then the Client Library will simply pass the path through
to the Client Daemon unchanged.

If a Client Protocol call returns DIODE ERR ROOT then the Client Library will use the resolv call
to obtain an equivalent partially canonicalized path from the Client Daemon. This path will have
as a prefix the directory above the involved DI/ODE mount point, followed by whatever remains of
the orignal path. This path will be further canonicalized as described above and the call retried.

For the intercepted rename() and link() functions—the two functions that take two paths
as arguments—the Client Library will only invoke the Client Protocol call of the same name
if both paths appear to be beneath DI/ODE mount points. If the Client Protocol call returns
DIODE ERR ROOT then the Client Library will attempt to resolve both paths via the resolv call and
then restart the processing. If only one path is beneath a DI/ODE mount point then the Client
Library will first pass that path to the resolv call. If that doesn’t result in a new path above the
DI/ODE mount point, then the Client Library will return the system error EXDEV. If both paths are
local, then the Client Library will call the underlying system call.

Note that as described above, the Client Library does ‘lazy’ canonicalization: the Client Library
stops processing a path as soon as it goes beneath a DI/ODE mount, leaving all canonicalization
of the rest of the path to the Client Daemon. Similarly, it only uses the resolv call if it received a
DIODE ERR ROOT error on a previous call or if it is logically necessary (as in the case of a rename()

with only one local path).

3.1.4 Client Library Internal State, File API

The Client Library keeps the following state:

• list of DI/ODE mount points

• session ID (hostname and pid, cached)

• map of Client Daemon number to socket address and RPC CLIENT handle
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• the process’s umask

• whether the process’s current working directory is beneath a DI/ODE mount point, and if so,
which Client Daemon is handling relative paths

• if the current working directory is not beneath a DI/ODE mount point, then it may cache the
absolute path to the current working directory

• map of emulated fds to Client Daemon numbers.

In addition, the first time getdents() or getdirentries() is called on an emulated directory
fd, the Client Library will obtain the complete list of directory entries from the Client Daemon using
the fdirlist call. This info will be stored by the Client Library and doled out with successive calls
to getdents() and getdirentries().

Configuration Files

The Client Library uses two configuration files located in the /etc/diode directory: filesock.conf
and dbsock.conf. The filesock.conf file lists the sockets on which Client Daemons will be ac-
cepting the Client Protocol. The dbsock.conf file lists the sockets on which Client Daemons will be
accepting Sleepycat DB/RPC calls as described in Section 3.2.

fork

A fork is handled as follows:

pid_t

fork()

{

for each DI/ODE daemon connection {

make a new, non-multithreaded RPC connection

send the forksess() request

destroy the CLIENT handle without closing the fd

}

if ((pid = syscall(FORK)) == 0) {

/* child */

for each DI/ODE daemon connection {

close parent’s connection

create multithreaded RPC connection on child fd

send the setsessid() request

}

return 0

}

/* parent */

close all child connection fd’s

return pid

}

exec (initialization)

After an exec, the Client Library needs to initialize itself. This will either be done via an ELF .init

section which is automatically executed during process startup or, if that is considered impractical,
when the first call is made to an intercepted function. In either case, the configuration files are
read to find the sockets to which the Client Library will connection. A connection is made to each
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daemon, and setsessid is called on each one. For each connection where the setsessid returned
success, the returned “opaque” data is parsed to extract the fd of the socket that the pre-exec image
was using to connect to that Client Daemon. That fd is closed. Furthermore, it will also send the
fiddump request to obtain from that Client Daemon the list of fds that were being emulated by that
Client Daemon. That also tells the Client Library whether the process’s current working directory is
beneath a DI/ODE mount point. Finally, the Client Library will invoke the underlying geteuid(),
getegid(), and getgroups() system calls and pass the obtained information to the Client Daemon
via the setuid, setgid, and setgroups calls.

3.1.5 Support For Multiple Client Daemons

As our current implementations of the Client Daemon do not use kernel level threads, they cannot
take advantage of multiple processors. To work around this, we will run multiple instances of the
Client Daemon on each Access Server. The Client Library will therefore spread its file accesses across
the Client Daemons listed in the /etc/diode/filesock.conf file by hashing all or part of the path
or paths specified in the calls. Once a file has been opened and a fid obtained from a Client Daemon,
all calls involving that fid must be sent to that same Client Daemon.

An additional complication occurs when a process attempts to use chdir() or fchdir() to change
its working directory to beneath a DI/ODE mount point. The chdir or fchdir Client Protocol call
can only be sent to a single Client Daemon. In the case of fchdir, it must obviously go to the
Client Daemon on which the specified fid was opened, while in the case of chdir, sending it to more
than one makes it non-atomic and may cause problems if the specified path is being renamed at the
same time. As long as a process has a current working directory beneath a DI/ODE mount point,
all relative paths must be sent to the Client Daemon which received the Client Daemon call as only
it can properly resolve such paths.

3.1.6 Authentication Issues

In order to guarantee that the Client Daemon’s per-process state includes the correct user ID and
group IDs, the Client Library intercepts seven system calls, setegid(), seteuid(), setgid(),
setgroups(), setregid(), setreuid(), and setuid(), and for each one calls the underlying sys-
tem call. If it succeeds, the Client Library will call the corresponding ‘get’ call, one of geteuid(),
getegid(), and getgroups(), and pass the result to the Client Daemon via the Client Protocol.

3.1.7 Internal Locking

To maintain the consistency of the information stored in the Client Daemons, the Client Library
will protect certain operations with mutexes.

id mutex For all the functions that set user, group, or supplementary group IDs, the Client Library
needs to send the appropriate request to all the Client Daemons as well as invoke the underlying
system call. It therefore will lock the id mutex before invoking the underlying call and release
it once all the Client Daemons have been updated.

chdir mutex When a process changes its current working directory, the Client Library may need
to tell a Client Daemon to clear its previous information regarding that process’s working
directory, as well as invalidate any other cached information about its working directory. The
Client Library will therefore long the chdir mutex before changing its working directory and
before using any cached information regarding the working directory.
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3.1.8 Unsupported Calls and Semantics

To make migration feasible, we restrict links and renames to be within a single directory. Therefore,
each inode has a unique and constant parent inode.

If a system call or libc function wasn’t listed in Section 3.1.2, then it is not implemented by the
Client Library. However, some calls warrant further discussion. Furthermore, some of the calls that
the Client Library does implement have noteworthy limitations.

Blocking vs. Non-Blocking Behavior

All operations on remote file descriptors have blocking behavior, regardless of settings by open()

or fcntl(). Since UNIX semantics demand that descriptors for local file system objects must be
blocking, this does not cause hardship: applications aren’t expecting non-blocking behavior, so the
Client Library doesn’t have to provide it. The one exception to this is flock: attempts to lock a file
are always non-blocking.

chdir A quirk in chdir()’s implementation is that the chdir() system call is almost always made
by the Client Library. If the path is considered remote, then the Client Library will pass the
path of the involved DI/ODE mount point to the local system call.

If a process that has previously changed its current working directory to beneath a mount point
changes it again to outside of any DI/ODE mount points, then the Client Library will send a
chdir call with an empty path to the Client Daemon that handle the last chdir or fchdir

call. This will clear the flag in the Client Daemon marking this process as being beneath a
DI/ODE mount point.

execve, et al After execve() has been called on an executable that is also linked with the Client
Library, the first time the process attempts to perform any I/O, it will first contact the Client
Daemon for remote file descriptor information and reconstruct its remote file descriptor table.
See also section 3.1.4.

During the handling of a chdir() or fchdir() call, more than one Client Daemon may believe
that it knows the process’s working directory. If an execve() took place during that period,
the Client Library initialization code would receive conflicting data from the Client Daemons
and would be forced to abort. The Client Library will therefore intercept calls to execve()

and hold the chdir mutex across the execve() attempt.

fchdir As with chdir(), changing to a remote directory will still generate a call to the system call
chdir() to change the process’s ‘real’ working directory to the place holder directory marking
the DI/ODE mount point.

fcntl Very few fcntl() operations are supported by the Client Library. Fortunately, most are
not required by the applications we use. Currently only F DUPFD, F GETFL, F GETFD, F SETFL,
and F SETFD are implemented. POSIX file locking via fcntl() is explicitly not supported.
Applications are expected to use flock() instead.

flock Only the exclusive behavior, LOCK EX, is implemented by the Client Library. Requests for a
shared lock, LOCK SH, are treated as if they were exclusive requests.

If the lock is requested without the non-blocking option LOCK NB, then attempts are made to
obtain the lock once per second until the lock is successfully obtained or there was an error
during the lock attempt.

lstat and lchown Symbolic links are not supported by the Client Daemon. A call to lstat() on
a path in a remote namespace is implemented exactly the same as stat(), the non-symbolic
link-aware version. Similarly, a call to lchown() on a path in a remote namespace is treated
the same as a call to chown().
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symlink Attempts to create symbolic links beneath a DI/ODE mount point always fail with the
error ENOSYS. When practical, the Client Library may catch attempts to create symbolic links
in local file systems that point into a DI/ODE name space and force them to fail. In the end
though, this qualifies for the “this hurts, Doctor” exemption.

readlink Attempts to call readlink() on paths beneath a DI/ODE mount point will always return
the error EINVAL.

mmap Due to the intimate tie between the OS and virtual memory management, mmap() is an
extremely difficult system call to emulate in user space. Therefore, the Client Library does not
do so.

For read-only, private mappings, the Client Library can malloc() a hunk of memory the size of
the requested mapping, read() data from the file into that hunk, and pass the hunk’s pointer
back to the caller. The caller wouldn’t know the difference between that memory hunk and
a “real” mmap()’ed one. This emulation technique cannot work well if the requested region is
many megabytes (or, heaven forbid, gigabytes).

A lightly-explored alternative is to use either mprotect() or, for Solaris, use the /proc file
system to manipulate regions of protected memory. The Client Library would have to trap
accesses to a protected memory region, determine what memory location caused the trap,
unprotect the region, read() data from Data Server(s) into the region, and then resume the
thread that triggered the trap.

This technique would require the Client Library to become almost as involved in memory
management as the OS’s VM system is. If the technique were viable, it might also be applied
to writable memory maps, also. However, it is still very unclear whether such a technique can
be implemented in a manner that is sufficiently stable and efficient for our purposes. Even if
we were to attempt it, the implementation would be extremely non-portable.

poll and select Both poll() and select() are not supported for remote file descriptors. Since
most UNIX applications don’t expect non-blocking behavior from local file system descriptors,
they don’t bother to put such descriptors into poll() or select() descriptor sets. Therefore,
the Client Library does not bother defining either of these functions.

getdents64, lstat64, and stat64 In an attempt to ease the porting of large-file aware system
utilities, the Client Library may intercept these calls. We do not expect to intercept any other
64-bit system or library calls at this time: our suite of applications have not yet demanded
them. Implementation should be straightforward if they are needed.

readv, writev The initial implementations of these calls are expected to be fairly näıve, with
the data being copied twice. While we will almost surely perform the obvious and trivial
optimization when the iov count is one1, further optimization will probably require some sort
of hand-coded XDR marshaling/unmarshaling routine.

syscall While we theoretically could intercept syscall() in the Client Library, doing so would
be very unportable and time consuming, as well as of dubious value—is not the intent of
syscall() to go directly to the kernel? We therefore have no plans to do so.

umask Like NFS, the Client Protocol has no concept of umask. As such, the Client Library must
intercept umask() and not only call the underlying system call, but also apply the given value
to all future calls to open() and mkdir() that are sent via the Client Protocol. The Client
Library will need to call the system umask() function during its initialization in order to obtain
the correct initial value for the internal value applied to Client Protocol operations.

1This is not a joke. We have seen applications where the data is all written out via calls to writev() with a single

iov.
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3.1.9 Supported STDIO Calls

[PAG: assuming the wrapping of the internal symbols ( open(), etc) works, we should be
able to use the system STDIO. If so, this section should be removed.] [NPC: Someone
besides me should decide this.]

The SFIO library [FKV00] used in conjunction with the Client Library to provide services con-
forming to the STDIO API. Thus the STDIO functions used by a Client Library-linked application
are limited to that provided by SFIO’s STDIO compatibility library.

The only known compatibility problem with the combination of the Client Library and SFIO
libraries is funopen(), which is present in the STDIO library found in FreeBSD’s libc. An in-
core data stream created by funopen() in this circumstance will fail. As a workaround, sendmail
should be compiled without using the bf * modules. Including undefine(‘confSTDIO TYPE’) in a
site.config.m4 file is sufficient to disable their use.

3.1.10 Other Calls

It currently appears that Solaris does not support use of the non-reentrant getfoobybar() interfaces
in a multi-threaded application regardless of whether concurrent calls are ever made. In particular,
we experienced coredumps inside such functions when we first started testing with the Client Library
linked against our multi-threaded RPC client. If this is true, we may want to provide wrappers in the
Client Library for those interfaces so as to minimize the changes needed to make a single-threaded
application work with the Client Library. Such wrappers don’t actually need to be fully thread-safe
or use thread-specific data—plain old static storage should be sufficient—but they should operate
correctly when called from only the main thread.

3.1.11 Current Implementation Sketch and Details

3.2 Sleepycat DB Interface

3.2.1 List of Supported Sleepycat Calls

The Sleepycat RPC facility supports only a subset of the standard DB API. The supported calls
are:

env_cachesize db_bt_maxkey db_put dbc_del

env_close db_bt_minkey db_re_delim dbc_dup

env_create db_close db_re_len dbc_get

set_lk_conflict db_create db_re_pad dbc_put

set_lk_detect db_del db_remove lock_detect

set_lk_max db_flags db_rename lock_get

env_open db_get db_stat lock_id

env_remove db_h_ffactor db_swapped lock_put

txn_abort db_h_nelem db_sync lock_stat

txn_begin db_key_range db_cursor lock_vec

txn_checkpoint db_lorder db_join

txn_commit db_open dbc_close

txn_prepare db_pagesize dbc_count

3.2.2 Client Library Internal State, DB API

Most of the state needed for the Sleepycat DB interface is already kept internally by the Sleepycat
DB library itself. The only state kept by the Client Library itself is the list of socket address for the
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available DB/RPC Client Daemons and an indicator of which will be used next, plus a mutex to
protect it. The socket address list will be initialized from the /etc/diode/dbsock.conf file, while
the “next to be used” pointer will be initialized with the process’s PID modulus the number of
entries in the table.

Support for multiple Client Daemons, part II

In order to spread the load of Sleepycat DB calls across the Client Daemons, the Client Library will
intercept the DBENV→set server() call and redirect it to the next socket in the table, wrapping to
the beginning after the last entry. To support this, we may back-port the new DBENV→set rpc server()

call from version 3.3.

3.2.3 A Note on Transactions

While DI/ODE supports the Sleepycat RPC API, it does not support the full semantics. Application
hints, described later, will be used to divide tables into several fragments distributed to different
back-end machines. Transactions are not allowed to span fragments. Cursors will give correct results
only as long as the cursor traversal does not cross fragment boundaries. (However, a blind first-to-last
cursor traversal will eventually reach all entries, though not necessarily in the btree order.)

3.3 Multithreaded RPC Client Support

3.3.1 Goal

The goal is to create a fully multithreaded RPC client-side library which will allow us to use a single
stream connection for multiple simultaneous RPC requests, and handle out-of-order replies. We can
use this for hooking up applications to either the file service or the database service of the DI/ODE
Client Daemon.

3.3.2 Existing work

The original SUN ONC/RPC library is the basis for the RPC support code in most UNIX platforms.
This basic code’s implementation of RPC-over-TCP runs the socket in half-duplex: the request is
sent, then the XDR stream is reversed and the reply is received. It is not thread-safe.

Solaris provides a “multithread-safe” RPC client library, but it apparently just wraps a mutex
around all use of the connection, serializing all RPC requests. We’ll need better concurrency for
higher performance.

The Erlang ONC/RPC package already provides this multithreaded capability for the DI/ODE
Client Daemon [?].

3.3.3 Thread and Synchronization Model

For portability to POSIX-compliant platforms, we use the pthreads threading model and API in our
implementation. We rely on the ability to create a thread, serialize threads on a blocking mutex,
suspend threads on a condition variable, create thread-specific data, cancel a thread, and register
cancellation cleanups. Sadly, all of these capabilities are quite necessary, so we can’t go with a more
thread-agnostic model, such as Sleepycat’s.

A single stream socket connects to the RPC server. Each application thread making an RPC
call will send its request on the socket and suspend itself. The RPC library runs its own daemon
thread to receive RPC replies from the socket, peek at the RPC transaction ID (XID), and awaken
the appropriate thread.
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Application threads contend for a single mutex to serialize sending on the socket. The daemon
thread is the only thread which reads from the socket, hence it does not need to synchronize in
order to do this. However, the data structure describing all outstanding requests, described below,
is accessed by all application threads and the daemon thread, hence is protected by a mutex. When
an application thread suspends itself to wait for a reply, it uses a private condition variable, paired
with the mutex controlling the outstanding request data structure.

To minimize contention for the mutexes, each application thread will perform XDR encoding
and decoding outside of the above synchronization. Since XID assignment requires a critical section
of code, application threads will build RPC requests with an XID of zero, but the request XID will
be overwritten with a real XID in a critical section.

Since an RPC server may send a quick reply after the application thread sends its request
but before it can take any other action, the application thread must register its information in
the outstanding request data structure before it starts sending its request. In the case of a quick
reply, or unfortunate thread scheduling, the reply may come before the sending thread manages
to suspend itself. Therefore, each condition variable is paired with a boolean predicate variable,
indicating whether or not a reply has been received.

To prevent an application thread from waiting forever in case the server loses its request, each
RPC call will specify a timeout. This timeout limits how long the requesting thread will wait on its
condition variable. If a thread wakes up from its wait with a timeout return value and its predicate
variable is still false, then it removes itself from the set of outstanding requests and returns an
error value. If the server later sends a reply and the daemon thread cannot match it up with any
outstanding request, it will assume that the requester has timed out and silently discard the reply.

Cancellation and shutdown.
Invariants:

1. Only the thread holding Ms will use the sending FD.

2. Only the thread holding Mr will read or modify XIDNEXT, STATE, or the table.

3. Client threads will examine HaveReply flag before waiting on their condition variable.

4. The daemon thread will set a client’s HaveReply flag before signaling their condition variable.

3.3.4 Data Structures and Memory Management

The set of outstanding requests is implemented as a linked list. Though this data structure has poor
asymptotic performance, it is simple and fast when the set size is small. Its size is limited by the
number of threads in the application, so if the linked list traversal time is becoming significant, we
have bigger problems to worry about.

Each application thread allocates a buffer to hold the marshaled request message. In order to size
this buffer, an initial XDR stream to a dummy memory region is created, and the xdr sizeof() call
is used to determine the size requirements for the request. This initial XDR stream is only required
because of the xdr sizeof() API. The application thread then allocates its correctly-sized request
buffer (leaving space for the RPC header with its authentication fields), creates an XDR stream into
it, marshals the request and RPC header, and then destroys the XDR stream. Once the request is
sent, the buffer is freed.

The daemon thread reads the 4 byte record marker from the socket which gives the size of the first
fragment of the reply. Since the reply should almost always be a single fragment, it simply allocates
a buffer to hold the entire marshaled reply. In case of a multi-fragment reply, it will realloc()
the buffer as needed. Once the daemon gives the requester thread the reply buffer, the requester is
responsible for freeing it.

Upon receiving the reply buffer, the requester creates another XDR stream for decoding the
buffer, decodes the reply, destroys the XDR stream, and then frees the buffer.
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3.3.5 API

CLIENT *clntfd_create_r(u_long prog, u_long vers, int fd)

CLIENT *clnttcp_create_r(struct sockaddr_in *raddr, u_long prog, u_long vers, int *sockp)

CLIENT *clntunix_create_r(

struct sockaddr_un *raddr,

u_long prog, u_long vers,

int *sockp,

u_int sendsz, u_int recvsz

)

This API should be fully documented.



Chapter 4

Client Daemon

4.1 Common Overview

The DI/ODE Client Daemon consists of two independent parts: the file side and that Sleepycat DB
multiplexer. Each will be documented separately.

The Client Daemon is written in Erlang, a concurrent functional programming language, for
reasons detailed in our Erlang User’s Conference paper [FLC+00].

4.2 Consistent Hashing

Both the File service and DB service use a common algorithm to assist in the efficient migration of
data.

In order to support arbitrary scalability of the number of Data Servers and Metadata Servers,
care must be taken in partitioning data. An algorithm called consistent hashing [KLL+97] is utilized
to partition data and metadata into migration units .

Consider a set of Data Servers across which data are stored. For online scalability reasons, it is
critical that we be able to increase or decrease the number of Data Servers with a minimum of data
copying to re-balance the amount of data stored on the Metadata servers. Consistent hashing meets
this requirement. When adding the n-th back-end storage unit, consistent hashing rebalances the
data distribution, changing the location of only 1

n
of the data. Furthermore, data are not redistributed

among the storage units which haven’t been changed.
Consistent hashing works in two stages. The input to the hash, called the handle, is first fed

through a conventional hashing function which maps the input handles uniformly onto the range of
integers {1, . . . , M} Each back-end storage unit is given a bucket set. A bucket set Bi consists of
some number of buckets, {bi1, . . . , biK}, each of which is just an integer in {1, . . . , M}. The buckets
in a bucket set are also spread uniformly across the hash range. Once a handle is mapped onto the
hash range, it chooses the closest bucket to its left (wrapping around if there are no buckets to the
left), and thus falls into one of the bucket sets.

If we have a large enough set of handles, they should map uniformly to the bucket sets. When
we add a bucket set, only a small fraction of the handles will see the new buckets as their closest
left neighbor. Similarly, if we delete a bucket set, those handles which formerly mapped to it will
now be scattered uniformly among the remaining bucket sets.

Note that K, the size of the bucket sets, must be constant, hence not growing as the number of
bucket sets grows. If N grows large relative to K, then the bucket sets will no longer have a uniform
distribution across the hash range, and irregularities can start to appear. Therefore we will choose
K to be large relative our our expected N , say 1000.

29
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All of the above must be made explicit, so that all of our Client Daemons can determine the
same hash values. Also, we need to be mindful that our algorithm will work efficiently with Erlang,
which does arithmetic with integer semantics (bignums) rather than modular bit-fields. As an im-
plementation quirk, we can greatly improve the efficiency of our Erlang integer calculations if we
keep the quantities below 227 − 1, or about 128 million.

Our first-stage hashing algorithm is could be just about anything, ranging from MD4 at the
expensive end, to a simple Knuth-like congruent hashing function. It will be determined later. It will
map onto the set {0, . . . , M − 1} where M = 100 000 000.

The location of bucket bik is (1000i+k)X mod M , where X = 61 803 399. We choose X to be the
nearest integer representation of Mφ, where φ is the golden ratio (

√
5 − 1)/2. Successive multiples

of the golden ratio modulo the unit interval have the amazing property that they always fall into
the largest interval free of previous buckets. Since M and X are relatively prime, the buckets will
eventually fill every integer between 0 and M .

Once the number of bucket sets is decided, a binary tree, or other data structure, can be con-
structed to perform the handle hash to bucket set mapping in O(log B) time, where B is the number
of buckets.

4.3 File Architecture

The file side of the Client Daemon accepts File Client Protocol requests from applications and makes
NFS requests of the back-end Data Servers. Table 4.1 gives a simplified mapping of the two protocols.

Since the Client Daemon performs the same tasks as the UNIX kernel file service components, it
makes sense to inherit the UNIX kernel architecture, at least in terms of its major data structures.

4.3.1 Session State

Corresponds to User File Descriptor Table in UNIX kernel:

session ID There will be an indexing method to find a session by its session ID.

“xtra” state This is uninterpreted by the client daemon. Currently it contains the file descriptor
of client’s socket to Diode server, so that it can be closed after an exec.

current directory Dnode table entry.

File ID table For each fid we store:

• fid

• open file table id

• flags

The flags member in the fid table stores the ‘close-on-exec’ flag. This flag is always cleared when
a new fid added to the table. If the first request on a new connection is setsessid, then after
associating the connection with the specified session, the client daemon must close all the fids whose
‘close-on-exec’ flag is set.

Implementation Note: We may choose to keep the session state in a single ETS table, or in
the gen server state of the Erlang process serving the session.

The DI/ODE protocol has three kinds of commands:

• operations on sessions: forksess(), fiddump(), ...

• operations on fids: read(), write(), seek(), ...
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File Protocol Procedure Client Daemon Procedure

open namei(), optional NFS CREATE

close session op
read NFS READ

write NFS WRITE

pread NFS READ

pwrite NFS WRITE

seek open file op
delete namei(), NFS REMOVE

rename namei(), NFS RENAME

link namei(), NFS LINK

mkdir namei(), NFS MKDIR

rmdir namei(), NFS RMDIR

setattr namei(), NFS SETATTR

stat namei(), NFS GETATTR

fstat NFS GETATTR

fsetattr NFS SETATTR

fstatfs NFS STATFS

statfs namei(), NFS STATFS

fdirlist NFS READDIR

flock NFS CREATE or NFS LOOKUP

fiddump session op
setsessid session op
forksess session op
listmounts root table op
resolv namei()
dup2 session op
chdir namei()
fchdir session op
pathconf namei(), NFS PATHCONF

fpathconf NFS PATHCONF

fsync NFS COMMIT

getflags open file op
setflags open file op
setuid session op
setgid session op
setgroups session op

Table 4.1: Translation of File Protocol to NFS Operations (simplified)

The namei() procedure comprises several NFS LOOKUP calls.
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• operations on paths: open(), mkdir(), rename(), ...

Operations on sessions are local to this layer. Operations on fids go down to the open file layer.
Operations on paths get interesting.

Operations on paths generally have to resolve to a dnode for a directory, followed by an operation
local to that directory (potentially two directories for rename()). Paths come in two flavors: relative
and absolute. Relative paths are resolved through a chain of lookup() operations on directory
dnodes, starting with the current directory dnode. Absolute paths need to use the structure in the
next section.

Root Table

The DI/ODE protocol specifies a mount index for many of its operations. The root table holds
system state associated with the protocol’s mount index:

mount id The mount identifier as used in the DI/ODE protocol.

layers The number of intermediate directories in this mount point, zero if none.

root id The Dnode identifier of the root of the mounted “partition”.

This table is expected to be small, on the order of 2-4 entries.

4.3.2 Open File Table

Corresponds to Open File Table in UNIX kernel, holding state that may be shared among different
fids in related sessions.

open file id The key referenced by session fids.

refcount One per fid reference.

offset 64-bit.

lock state nil or state and Pid of lock refresher.

open flags r, w, rw, . . .

dnode id Reference to Dnode table.

Since all locks are leases, any lock will have a helper process attached to it to refresh the lock.

Implementation option: Due to overheads of immutable data structures, and limitations of
ETS library, things like the open file table may actually be implemented as a set of tables:

• open file table:

* id

– open flags

– dnode id

open file refcount table:

* id

– refcount

open file lock state table:

* id

– lock state
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open file offset table:

* id

– offset

(“*” denotes the key of the table) though the ets:increment counter() function may do what
we want for some of these fields.]

Most operations on open files just pick up some open file state and proceed to operate against
the underlying dnode.

4.3.3 Dnode Table

A “dnode” plays the same role in DI/ODE as an inode or vnode in a traditional UNIX kernel - to
represent a file or directory, and cache some of its information in memory.

id Primary key.

refcount Sum of open file table plus parent plus session pwd references. Nodes with a positive layer
(see below) may be destroyed once the refcount reaches zero, but nonpositive layers will persist.

parent A reference to the containing directory, or self if this is the “mount point”. Due to restrictions
placed on rename(), this field is immutable.

type Indicates whether it is a file or directory.

root Index into root table.

layer Signed integer field giving level relative to the consistent hashing level. Zero indicates that
lookups on this directory must go through consistent hashing. Positive indicates levels within
a migration unit. Negative indicates intermediate directories. If the layer is not positive, then
this must be a directory node.

subdirs If the layer is negative, a list of {name, dnode} tuples for the subdirectories at this level.

fhlist A list of {DataServer, FileId, FileHandle} tuples. Positive levels will have a single entry
(except during migration). Nonpositive levels will have one entry per Data Server.

name This node’s name within its parent directory. Renames by other Client Daemons may inval-
idate this data, so be careful.

Implementation option: Instead of maintaining the fhlist as a list, we can maintain an ETS
ordered set of tuples of the form {{DS, Dnode}, FH}. This gives a quick way of mapping to
filehandles, as well as a convenient way to accessing all filehandles associated with a particular
Data Server, by stepping through them with ets:next/2.]

Dnodes behave differently, depending on their level. In particular, for the following operations:

lookup layer < 0 Look at the subdirs field.

layer = 0 Go through consistent hashing to determine the Data Server, look up the informa-
tion in the fhlist, then perform the NFS operation on the correct Data Server.

layer > 0 Perform the NFS operation on the single Data Server.

dirlist layer < 0 Dump the list of subdirs.

layer = 0 For each Data Server, perform the NFS operation and merge the results.

layer > 0 Perform the NFS operation on the single Data Server.
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mkdir, rmdir layer < 0 Not allowed.

layer = 0 Go through consistent hashing to determine the Data Server, look up the informa-
tion in the fhlist, then perform the NFS operation on the correct Data Server.

layer > 0 Perform the NFS operation on the single Data Server.

If the same file is opened from different sessions, they must share the same dnode. (Migration will
require this property.) Therefore, the creation of dnodes must be single-threaded to resolve races.

4.3.4 NFS Mount Table

This holds the information from the CD config table, as well as dynamic state associated with the
RPC connection and NFS mount data.

ds-diode-root {ds, diode root} pair, for quick indexing.

remote-path

nfs-version

transport

rpc-client

root-fh

4.3.5 Consistent Hash Bucket Map Table

We need one table to map first-stage hash values to bucket sets, as described above, and a second
table to map bucket sets to Data Servers.

4.3.6 Namei

Need to describe how namei() handles migration, mount points, etc.
Basic idea: for open files and current directories, we keep a Diode inode around - which stores

enough information to use. Namei can create new ones?
Hmm. Namei *has* to create new ones, in case you’re using it for, e.g. and open() chdir(), so the

caller is responsible for decrementing the refcount after it’s done with the namei() result.

4.3.7 Locking

In this release of DI/ODE, file locking will be performed using lock files: when a file F is to be locked,
a file named F.lock is created in the same directory. As such, a lock is attached to the name used
to open the file and not the file’s inode. Unlinking a locked file, renaming a locked file, or locking
a file with multiple hardlinks will exhibit non-standard behavior. In the first case a ‘dangling’ lock
will be left, while in the last case a lock on one name will not keep another name for the same file
from also being locked. Renaming a locked file both unlocks the file and leaves the original locking
‘dangling’.

For DI/ODE, we require our applications to not rename or unlink file that other processes might
have locked. The lock file itself is just another file as far as migration is concerned. Our file creation
implementation of the flock() call must have the same exclusivity properties that we guarantee
creat() during migration. The lock file must be occasionally touched to refresh the lease. Lease
refreshing is performed automatically by the Client Daemon as long as the application session which
requested the lock remains active. To delete the stale lock file, use the “tower of locks” algorithm,
whose names are F.level.lock (with level starting at 0 and going through 9).
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4.3.8 Linking and Renaming

To make migration feasible, we restrict links and renames to be within a single directory. Therefore,
each inode has a unique and constant parent inode.

4.3.9 Process Tree

We need a dedicated Erlang process associated with each Client Protocol connection, due to con-
straints of the socket library. Since we’re interleaving RPC requests from different threads over the
same connection, we will dispatch a new thread for each request.

Depending on the exact implementation of the larger data stores (session states, open file table,
dnode table), we may need dedicated processes for submitting and/or retrieving data from these
stores.

Each RPC client to a back-end Data Server is a separate process.

4.3.10 Migration

The file migration algorithm is described in Chapter 7.
For reasonable performance, consistent hashing should only be calculated upon first lookup of

the hashing handle. Data structures within the dnode table will support the Data Server mapping
in one location.

This single location will need to be updated during the different phases of migration. We must be
careful that a single operation making multiple queries into this table won’t operate on inconsistent
replies.

In order to acknowledge a change in the migration phase, the Client Daemon must ensure that
all operations based on the previous phase have completed. We can accomplish this by having
each session sequentially number the requests it has received, and keep track of those which have
completed. When the mapping table has been updated to reflect the new View, each session will
be asked to mark its current request number, and then reply when all equal and lower-numbered
requests have completed. The Client Daemon can then acknowledge the phase transition.

4.4 Database Handling

The Client Daemon is, among other tasks, responsible for multiplexing Sleepycat DB RPC calls onto
a set of Metadata Servers. A number of complexities arise from converting a centralized database to
a distributed database. The following sections describe some of the design challenges and algorithmic
design of the Sleepycat DB RPC multiplexer.

4.4.1 Theoretical constraints

Following is a brief theory-based description of some of the main issues, along with the solutions
that appear most likely to fit our needs. For a more complete discussion of distributed transactions,
see [GR93, BHG87, Gos91, Tan92].

General need for two phase commit

An application-initiated DB transaction is translated by the DB Multiplexer into n multiplexer-
initiated transactions, where n is the number of Metadata Servers that the application transaction
operates on. n is unknowable to the application. An error in any of the multiplexer transactions is
handled by aborting all associated multiplexer transactions and returning a transaction error to the
application. If all of the multiplexer transactions proceed without error, then when the application
transaction is committed, all multiplexer transactions must be committed. If some, but not all of the
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multiplexer transactions succeed, then the application transaction ends up in a partially committed
(inconsistent) state due to the non-atomic nature of the set of multiplexer transaction commits.
There are two possible solutions to this problem:

1. Use two phase commit. Before committing any of the multiplexer transactions, prepare them
for commit, so that if there is a failure during commit, all of the prepared transactions can be
rolled forward (committed) or rolled backward (aborted) during a recovery process.

2. Make sure the application can handle all possible inconsistencies.

Two phase commit is proven to work correctly, but requires considerable extra work to implement.
On the other hand, assuring that the application can handle all possible inconsistencies is difficult
and prone to error on an ongoing basis.

Distributed deadlock

Sleepycat DB includes facilities for deadlock detection and resolution. However, since we are dis-
tributing the database across multiple Metadata Servers, there is the potential for distributed dead-
lock, which is undetectable at the individual Metadata Server level. There are a several algorithms
that address distributed deadlock detection and resolution. Algorithms for distributed deadlock de-
tection and/or resolution include:

• Assure that no transactions have the potential for distributed deadlock. In general this is a
very difficult approach, but it may be feasible for the limited set of transactions that our
application does.

• Abort transactions that make no progress within a timeout period. This is the simplest ap-
proach, but has the disadvantage of introducing delays in deadlocked transactions. In addition,
since no forward progress is guaranteed (old transactions may be aborted in favor of younger
transactions), there is the potential for livelock.

• Use the wound-wait algorithm. Assign all transactions a global sequence number. Whenever
there is contention for a resource, abort the younger transaction. This approach has the disad-
vantage that it opportunistically aborts transactions to avoid any deadlock, when statistically
few of the resource contentions will result in deadlock.

• Use a global lock manager. All locks are controlled by a single entity. This solution has signif-
icant negative performance implications, since locking needs to be fast, and IPC is generally
one to three orders of magnitude slower than native locking.

• Maintain a global “waits-for graph”. Every time a transaction has to wait for a lock, the waits-
for graph is updated, and when a cycle is detected in the graph, one or more transactions are
aborted.

• Use what is referred to as “edge pushing” to communicate potentially interesting waits-for
graph edges between Metadata Servers, but do not maintain a global waits-for graph. Edges
are pushed in such a way that at least one Metadata Server can detect any deadlock.

We will use timeouts for deadlock recovery (option #2 in the list above) in the initial Client
Daemon implementation. We may have to spend time hand tuning application transactions to reduce
the deadlock rate if performance suffers as a result of the näıveté of using timeouts for deadlock
resolution. We have chosen this method because it’s easy to implement and we are expecting that
the number of deadlock/livelock we actually encounter in practice will be small. If this is not the
case, then we will try would-wait. If that doesn’t work, then Sleepycat DB is probably not a good
choice for that application.

We will need to empirically determine an appropriate timeout interval.
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Distributed deadlock outside of transactions

It appears as though there is no recourse for distributed deadlock that does not occur within a
transaction. That is, it is possible for two simultaneous application requests to result in distributed
deadlock, and there will be no transaction timeout to break the deadlock. This problem can be
resolved in any of the following ways:

• Make sure the application never acquires more than one lock at a time outside of a transaction.
In the case of Sleepycat DB, this is feasible as long as records are small enough to avoid the
use of overflow pages. This limitation also applies to direct use of the Sleepycat DB locking
API.

• Modify Sleepycat DB to time out operations even outside of transactions.

• Implement a distributed deadlock resolver that is not based on timeouts.

Only the first method is being supported for the initial release. As such, applications are required
to comply with this limitation.

4.4.2 Categorization of Sleepycat DB RPC messages/responses

Depending on the type of Sleepycat DB RPC message, there are different mechanisms for handling
messages/responses.

The following messages are broadcast to all Metadata Servers:

• env cachesize (May be removed from the Sleepycat DB RPC protocol.)

• env create

• env remove

• db bt maxkey (Global maximum is returned.)

• db bt minkey (Global minimum is returned.)

• db create

• db flags

• db h ffactor (We may want to adjust this.)

• db h nelem (Results are merged.)

• db key range (Results are merged.)

• db lorder

• db pagesize

• db re delim

• db re len

• db re pad

• db remove

• db rename
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• db stat (Results are merged.)

• db sync

• lock detect

• lock stat (Results are merged.)

The following message pairs are mapped to a single reference-counted broadcast to all Metadata
Servers:

• env open, env close

• db open, db close

The following messages can be sent to any Metadata Server:

• db swapped (Not used by some applications.)

The following messages are sent to one or more Metadata Servers, according to consistent hash
results:

• txn abort

• txn begin

• txn checkpoint

• txn commit

• txn prepare

• db cursor

• db del

• db get

• db join (Not used by many applications, very complex to implement.)

• db put

• dbc close

• dbc count

• dbc del

• dbc dup

• dbc get

• dbc put

• lock get

• lock id

• lock put

• lock vec
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lock id deserves special mention, since a single lock ID may need to be used across multiple
Metadata servers. The multiplexer will need to maintain a lazily expanded table of application lock
IDs that map to per-Metadata Server lock IDs. This is similar to how transaction and cursor IDs
need to be managed.

In order to support lock migration, lock get and lock put maintain a table of outstanding locks
(acquisition pending or owned). See Chapter 8 for details.

4.4.3 Broadcasted DB operations

In the general case, the following algorithm is used to broadcast Sleepycat DB calls that need to
be sent to all Metadata Servers. Such calls include both broadcast requests and reference counted
broadcast requests.

Where MDS is the set of all Metadata Servers:

1. Receive request R from the application.

2. ∀{M : M ∈ MDS}:

(a) Create request Rm, which is a proxied version of R, and send it to M .

(b) Receive the response to Rm. If there is an error, try to back out all operations
associated with R and return an error to the application.

3. Send a response to the application.

Since the above algorithm is not protected by transactions, additional care must be taken to
detect and handle situations where not all Metadata Servers are in the same state. For example,
during a db create call, if some, but not all Metadata servers already contain the table that is to be
created, the table must first be removed from Metadata servers that contain the table.

4.4.4 Multiplexed DB transactions

All Sleepycat DB calls within a transaction must be transparently multiplexed onto a set of trans-
actions that map directly to the set of Metadata Servers involved in the transaction.

A typical successful application-initiated transaction consists of roughly the following steps from
the application’s perspective:

1. Begin transaction T .

2. A sequence of any of the following operations (not an exhaustive list):

• Get a record.

• Put a record.

• Perform a child transaction.

• Perform a cursor operation.

• Perform a lock operation.

3. Commit transaction T .

Given the set MDS of Metadata Servers, this gets translated by the multiplexer to:

1. Create a transaction number for T and return it to the application.

2. ∀R ∈ T , where R is a request:
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(a) Use the consistent hash to determine the set M of Metadata Servers, where M ⊆
MDS , that R maps to.

(b) ∀{M : M ∈ M}:
i. Create a request Rm to send to M .

ii. If M has not yet participated in T , create the list of parent transactions on
M .

iii. Send Rm to M .

iv. Receive the response to Rm and translate it for later collation into the response
to R.

(c) Return the collated response to R to the application.

3. Prepare all transactions associated with T .

4. Commit all transactions associated with T .



Chapter 5

Data Protocol

5.1 File Interface

5.1.1 Implementation

The File Interface Data Protocol is NFS version 3. The Client Daemon also supports NFS version
2, but we do not support its use for Boardwalk. We support NFS transport over TCP or UDP, but
at this point UDP seems marginally preferable.

There are pieces of the NFS protocol that we do not currently support. The unsupported com-
mands are: SYMLINK, MKNOD, and READLINK. We currently choose not to implement READ-
DIRPLUS. While READDIRPLUS was designed to be a performance benefit, when performed on
NFS servers that have directories with a large number of entries by clients that are only interested
in one directory element at a time, it can be a serious performance bottleneck. Substantially, we
expect that our applications fall into this camp. If, later, we want to use READDIRPLUS for some
reason, we can implement it, although its implementation would be challenging.

5.2 Sleepycat DB Interface

Sleepycat DB calls are sent over ONC RPC. Rather than encoding and sending the actual internal DB
structures (DB, DB ENV, etc.), these are represented over-the-wire using 32-bit ID numbers, allocated
by the server when a request creates a new such structure.

5.2.1 Goals

• The server should be able to take advantage of and load-balance across multiple CPUs.

• Actions that would have been violations of the DB library’s threading requirements (for ex-
ample, simultaneous requests to the same cursor, or to a cursor and its associated transaction)
do not need to be serialized by the server: while it should be robust in the face of such bugs in
the client, the server is not intended as a means of lifting such restrictions. Returning failure
for the violating call and logging the event will be considered sufficient.

• In general, the server should be robust in the face of client-side errors and crashes. It should
not leak memory or itself crash, no matter what the client does.

• While initially developed for Solaris 2.x, the server should be portable to, at least, other
pthreads implementations.

41
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• While it would be ‘nice’ if the same code-base could be compiled as either a single threaded
or multithreaded server, that is not a requirement of the Boardwalk project.

• The server needs to handle the calls made by applications. Design limitations that are outside
of an application’s usage of DB are tolerable, if disliked. (See section 5.2.6.)

• The design and product should be supportable by Sleepycat. This implies that design limita-
tions must be acceptable to the wider DB community or resolvable without undue effort.

• The server should hide the recovery process from clients as much as is possible.

5.2.2 The Threading Constraint

The DB library requires that all cursor and transaction calls be made by the thread that created
the cursor or transaction. All requests involving a given cursor or transaction must be forwarded to
the correct thread and performed there.

Actually, this is not true. The DB library merely requires that no cursor or transaction be
‘involved’ in concurrent calls. The design documented here was written using the previous, stricter
constraint. As this design has been reviewed both internally and by people at Sleepycat and appears
correct, and as the implementation of it appears to meet our initial performance goals, we have
decided to postpone the redesign of the daemon under the more lenient version of the threading
constraint until such time as it becomes a performance, management, or maintenance issue.

5.2.3 Prior Work

Sleepycat DB version 3.1.17 includes an RPC server. However, it was written mainly as a proof-of-
concept and for debugging purposes, and is single threaded. While portable and an excellent base
to work from, it doesn’t meet our performance goals.

In Solaris 2.4, Sun extended rpcgen and added library entry points to allow an RPC server to be
multithreaded. The threading API thus implemented supports two different modes of operation, auto
and user. The former automatically processes each request in a separate thread, while the later calls
invokes the dispatch function (e.g., db serverproc 1()) in the same thread but lets the programmer
hand off the task to other threads and delay the response as needed. The Solaris implementation only
supports multithreaded operation when used with TI-RPC (Transport Independent RPC), built on
top of the TLI network API. Together, this renders the RPC startup routine generated by rpcgen
practically unportable, though the general thread-safe calling conventions generated by rpcgen’s -M
flag may be used even in a single threaded server, albeit with some loss in speed. We have confirmed
that the Solaris multithreaded RPC server implementation allows requests and replies on a single
connection to be interleaved.

In short, this is a functionality that is built-in to Solaris that may have to be implemented by
developers if we port the Sleepycat DB interface to DI/ODE to other operating systems.

5.2.4 Implementation

Thread models

In order to meet the DB library’s thread requirements, the server will need to associate a backend
(“worker”) thread with each tree of transactions or cursors. To maximize concurrency, each top-level
transaction will have its own worker thread, as will each transactionless cursor that isn’t a duplicate
of another cursor. Note that when a transactionless cursor is duped with DBC→c dup(), the new
cursor must be associated with the same worker thread.

The RPC side (“frontend”) of the server will need to decode the request and, for those requests
involving cursors or transactions, make an ‘inter-thread call’ to the correct worker thread. Where
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the RPC server developed by Sleepycat has a single function to perform the processing for a request,
the multithreaded server will need two: one that does the ID→DB entity mapping and inter-thread
call and is executed by the request thread, and one that performs the actual DB call and is executed
by the correct worker thread.

Threading the frontend of the server is complicated by the RPC service entry routine, svc run(),
being in the system libraries. Using the Solaris version as a model, a multithreaded implementation
of the svc run() will eventually need to be written. Development of the rest of the server can take
place under Solaris using the system version.

The Solaris implementation introduces a dichotomy between what it calls auto and user mode. In
auto mode, the user defined serverproc() routine (e.g., db serverproc 1()) is executed in a sepa-
rate thread for each request. In user mode, the serverproc() routine is executed in a single-threaded
manner—svc run() will not accept another request until the serverproc() routine returns—but
the actual reply can be sent asynchronously from another thread.

As applied here, the auto mode would result in a 1–M–N model: one thread in svc run()

performing the select/poll loop, M requests threads handling the concurrent requests, and N worker
threads to perform the transaction and cursor specific calls. This can be done with no changes to
the db serverproc 1() routine created by rpcgen.

The user mode would allow a 1–N+ model: one thread performing the select/poll, XDR de-
code, and selection of worker thread, N worker threads handling for transaction and cursor calls,
with additional threads handling other calls (the ‘+’). This would require splitting in half the
db serverproc 1() routine, or just writing it from scratch (the Sun Answerbook itself illustrates
user mode with a hand-written serverproc() routine).

While coding to a Solaris specific API may seem inadvisable, Sun has released the code for their
multithreaded svc run() routine and other OSes are starting to bring in this new code. For example,
the main branch of FreeBSD development now includes a version of TI-RPC and plans are being
developed for the integration of the multithreaded code. Given that, targeting that API seems a
good choice for long term portability. If it is determined that we need to release Boardwalk or some
later version on a platform that has not yet taken up Sun’s code, then we can at that time implement
our own version, probably starting from the code that Sun has released. Either way, doing so allows
us to develop a stable frontend implementation against which we can implement and test a backend
that solves its half of the threading problem.

That said, the Solaris API has a few deficiencies that we have to work around. In particular,
there is no way to perform a ‘clean shutdown’, wherein new connections would no longer be accepted
and existing connections would only be usable for sending replies to outstanding requests (c.f. the
shutdown() system call), nor is there any way for the RPC server to detect when a particular
connection has been closed so as to perform cleanup of resources associated with that connection.
We don’t currently have a workaround to the former, while the idle-environment timeout provides
for the eventual release of resources associated with a closed connection.

Writing our own svc run would be unpleasant. This means that we need to manage graceful
shutdowns ourselves, but since we need to handle abrupt shutdowns anyway, this shouldn’t be an
extra restriction. No matter what we do, at disconnect time, some connections will be processed,
some will be gracefully aborted, and some will probably be lost. Our applications need to be able to
handle these situations when they happen on a potentially inconsistent data repository.

Data Structures

Logically, the various DB structures—DB ENV, DB, DB TXN, DBC—are arranged in a hierarchy as in
Figure 5.1.

Each of the DB structures has a corresponding structure in the RPC server—ct base env, ct db,
ct txn, ct dbc—that contains the pointer to the underlying DB structure and enough additional
information to let the RPC server perform close operations and timeouts completely (no dangling
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DB_TXN

DBCDBC

DB_TXNDB_TXN

Figure 5.1: Database Structure Hierarchy

structures) and safely (properly ordered). The DB ENV structure actually has two structures associ-
ated with it in the RPC server: ct base env and ct env. The former contains the actual pointer
as well as enough information to run recovery and reopen the environment. The latter is the per-
connection view of the environment and contains the ID number and timeout information.

To provide a location for information specific to a worker thread, I’ve created the ct wrk struc-
ture. This includes fields for passing the information needed for the inter-thread call, as well as
the synchronization variables to protect them. This structure is inserted into the graph between
top-level transactions and their parent environment, as well as between transactionless cursors and
their parent environment.

The NULL transaction When a new top-level transaction or transactionless cursor is created the
txn begin() or DB→cursor() call is passed a NULL pointer. This is represented in the RPC protocol
as a zero ID. To simplify management of the cursor and transaction lists, the ct wrk structure
includes an instance of the ct txn structure that has a NULL DB TXN pointer and a zero ID.

The logical graph therefore ends up looking like that in Figure 5.2, with the arrows pointing from
children to parent transactions.

All of the links but one in Figure 5.2 are bi-directional: each structure keeps a list of the structures
of each type that are beneath it, as well as a link to its parent or parents. The single exception is in
the ct txn structure: its ‘parent’ pointer references its associated ct wrk, not its immediate ct txn

parent. The ‘downward’ links are necessary to allow ‘close’ operations and timeouts to properly close
and free all structures beneath the structure being closed, while the ‘upward’ links are necessary for
proper locking during list operations, for detecting cross-environment operations, and to make some
tree operations more self-contained.

Note that all the lists are done using ‘head’ and ‘next’ pointers. For example, the ct db structure
contains a ‘next’ pointer for the list of ct dbs beneath its parent ct env and a ‘head’ pointer for
the list of ct dbcs beneath it. The ct dbc structures contains two ‘next’ pointers, one for its parent
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Figure 5.2: RPC Server Structure Hierarchy
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ct txns list of cursors, and one for its parent ct dbs list. These are defined and accessed via the
LIST * macros defined in the queue.h header file. These macros and definitions permit the removal
of an item from a list given just the pointer to the item itself and the name of the member containing
the ‘next’ pointer.

Structure definitions

typedefs and forward declarations

typedef u_int32_t id_int;

struct ct_base_env;

struct ct_env;

struct ct_wrk;

struct ct_txn;

struct ct_db;

struct ct_dbc;

LIST_HEAD(ct_env_list, ct_env);

LIST_HEAD(ct_wrk_list, ct_wrk);

LIST_HEAD(ct_txn_list, ct_txn);

LIST_HEAD(ct_db_list, ct_db);

LIST_HEAD(ct_dbc_list, ct_dbc);

typedef void (request_proc)(struct ct_wrk *, void *argp, void *resultp);

struct request {

request_proc *req_proc;

void *req_argp;

void *req_resultp;

};

The id int type is used to hold IDs and must match the type of the RPC field used to pass IDs (in
particular, its maximum value better be no larger than that of the RPC field). The LIST HEAD(tag,

item) macro declares a structure, struct tag, to act as the head of a list of struct item. Similarly,
the LIST ENTRY(item) macro is used when declaring ‘next’ pointer structure members. The target
function of an inter-thread call is cast to the request proc type and called in that form, so argument
types better be compatible! The struct request type packages up such a function pointer and the
argument and result pointers which are passed between threads in the call itself.

struct ct_base_env *db_base_envs;

size_t db_base_env_count;

This is the global array of ‘exported’ environments. This array is created at system startup and
never changes size. When a request is received to open or remove an environment, the RPC server
looks for the specified home in the structures in this array.

struct ct_base_env {

/* head links */

struct ct_env_list ct_envs;

/* synchronization */

pthread_mutex_t ct_mutex;

pthread_cond_t ct_cond;
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/* local data */

unsigned int ct_count;

unsigned int ct_flags;

#define RPCBASE_RECOVERING 0x01 /* recovery is in process */

#define RPCBASE_SHUTDOWN 0x02 /* the server is going down */

#define RPCBASE_DEAD 0x04 /* this base_env has shutdown */

#define RPCBASE_TXN_NEARWRAP 0x08 /* txn-ids are getting up there */

#define RPCBASE_TXN_WRAPPED 0x10 /* out of txn-ids, must handle it */

#define RPCBASE_CANTUSE 0x13 /* can’t use it for some reason */

/* items set when the environment is actually opened */

DB_ENV *ct_envp;

long ct_idle_timeout;

long ct_max_timeout;

long ct_def_timeout;

/* items saved when it’s opened in case we need to reopen it */

u_int32_t ct_open_flags;

int32_t ct_open_mode;

/* immutable items */

const char *ct_name;

const char *ct_path;

};

This is the server-wide, per-environment structure. Each instance of this structure has a thread
associated with it that handles idle timeouts and auto-recovery.

The ct name member is the value looked for by environment open and remove requests. The
ct pathmember contains the full path that will be passed to the DBENV→open() or DBENV→remove()

call. The ct count member is used during auto-recovery to keep track of how many ct wrk have yet
to finish closing their cursors and transactions.

If the RPCBASE RECOVERING flag is set, then an operation in this environment has returned
DB RUN RECOVERY and auto-recovery is being performed (c.f. Section 5.2.4). If the RPCBASE SHUTDOWN

flag is set then the server is being shutdown. When the thread for this ct base env has fin-
ished shutting down, it sets the RPCBASE DEAD flag and kills exits. The RPCBASE TXN NEARWRAP and
RPCBASE TXN WRAPPED flags are used to indicate when this environment is either getting ‘close’ to
running out of transaction IDs, or when it has done so. They are set by a worker thread performing
txn begin(). Handling is similar to auto-recovery.

The ct envs member is the head of the list of per-client-environment structures for this environ-
ment. That is, every time a client sends a DBENV→open() request for this environment, a ct env is
added to the ct envs list. If the list was previously empty, the ct cond member must be signaled
on to guarantee that the thread for this ct base env will check its idle timeout. DBENV→remove()

requests check this list and will fail with status EBUSY if the list is not empty. The DB FORCE flag to
DBENV→remove() is not supported.

The ct idle timeout, ct max timeout, and ct def timeout members are initialized to the
global idle timeout, global max transaction timeout, and global default transaction timeout, re-
spectively, but when the environment is opened these values may be overridden by settings in the
environment’s DB CONFIG file.

The ct open flags and ct open mode members store the flags and mode that were passed to
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DBENV→open() when it was first opened. These are saved here so that when the environment is
reopened as part of auto-recovery it can be opened with the same values as before.

When support for the DBENV→set flags() call is added, another member will be added to store
the flags used with it, also for use during auto-recovery. The same goes for any other supported
‘pre-open’ environment call that sets state.

Finally, note that this array subsumes the dbsrv home list that previous designs have used to
map environment names to their directories.

In all the structures that follow, the ct id member is (for now) considered private to the ID
subsystem and should not be examined or changed by other routines.

struct ct_env {

id_int ct_id;

/* next links */

LIST_ENTRY(ct_env) ct_next;

/* head links */

struct ct_wrk_list ct_wrks;

struct ct_db_list ct_dbs;

/* synchronization */

pthread_mutex_t ct_mutex;

pthread_cond_t ct_cond;

/* local data */

time_t ct_time;

unsigned int ct_count;

unsigned int ct_flags;

#define RPCENV_CLOSING 0x01 /* no new uses allowed */

#define RPCENV_RECOVERING 0x02 /* temporarily unavailable */

struct ct_base_env *ct_base;

/* immutable items */

long ct_timeout;

};

The ct time member contains the time of the most recent of the following:

1. the processing of a request that directly specified this ct env

2. the closing of a child database

3. the closing of the last transaction or cursor associated with a child worker

The ct count member is a count of the number of requests currently being processed that directly
specify this ct env. The ct time and ct count members and the two list heads, ct wrks and ct dbs,
are all protected by the ct mutex member. Furthermore, whenever a thread removes the last item
from either list, or decrements ct count to zero, it should signal on the ct cond member. The
RPCENV CLOSING flag is set when a DBENV→close() request has been received and indicates that
the environment should be considered as already closed for new requests while old requests and
handles are still being dealt with. The RPCENV RECOVERING flag indicates that auto-recovery is in
process and that requests that operate directly on this environment should wait on the ct cond
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member until the flag is no longer set. The ct base member is set when DBENV→open() is called.
This means that an actual DB ENV structure is not created until the client does the open, and then
only if that environment directory has not been opened for another request already. The ct timeout

member of the ct env structure is initially set from the call that creates the environment and then
updated against the ct max timeout and ct def timeout members of the ct base env structure
when the environment is opened. Once the environment is opened the timeout cannot change until
the ct env structure is returned to the free pool.

struct ct_env_list db_unopened_envs;

pthread_mutex_t db_unopened_env_mutex;

When a ct env structures is created by a client request, it is not associated with a ct base env

structure. That doesn’t happen until the client sends a DBENV→open() or DBENV→remove() request.
Such unassociated ct env structures are kept on the db unopened envs list.

struct ct_txn {

id_int ct_id;

/* next links */

LIST_ENTRY(ct_txn) ct_next;

/* head links */

struct ct_txn_list ct_sub_txns;

struct ct_dbc_list ct_dbcs;

/* parent link */

struct ct_wrk *ct_parent;

/* immutable items */

DB_TXN *ct_txnp;

};

The ct txn structure has no members concerned with synchronization as, with one exception,
it is only accessed by the worker thread that it is associated with. The exception is the ct parent

member which may be accessed by a request thread coming from a child cursor. This is fine, as the
ct parent member is set at allocation and is immutable until the ct txn is returned to the free
pool, and that cannot happen until all child cursors are closed.

struct ct_wrk {

/* next links */

LIST_ENTRY(ct_wrk) ct_next;

/* head links */

struct ct_dbc_list ct_dbcs;

/* parent link */

struct ct_env *ct_parent;

/* synchronization */

pthread_mutex_t ct_mutex;

pthread_cond_t ct_cond;
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unsigned int ct_state;

#define WRK_IDLE 0x00 /* R: worker is idle */

#define WRK_WORKING 0x01 /* R: request has been loaded */

#define WRK_DONE 0x02 /* W: I’m done, requester should go on */

#define WRK_MASK 0x03 /* mask of the above */

#define WRK_SHUTDOWN 0x04 /* S: shutdown if/when next idle */

#define WRK_DIE 0x08 /* S: kill yourself */

#define WRK_CLOSEALL 0x10 /* S: the environment needs to be

** recovered, close all real handles,

** return DB_RETRY */

/* local data */

struct request ct_request;

struct ct_txn ct_txn; /* the zero-id txn */

time_t ct_time;

};

The ct state variable is used to communicate between threads: threads lock the ct mutex

member, change ct state, possibly change the fields inside the ct request member, then broadcast
on the ct cond member (c.f. Section 5.2.4) and unlock the ct mutex member. The WRK SHUTDOWN

flag is used to signal, without being held up by a request that’s being processed, that the parent
environment is being closed and that the worker thread should close all the cursors and abort all
the transactions under it. If the WRK DIE flag is set then the worker is being completely destroyed
(not just returned to the free pool) and the worker thread, when next idle, should free the ct wrk

structure then call the thread exit routine. The WRK CLOSEALL flag is set when some operation in this
environment has returned DB RUN RECOVERY and indicates that the worker should call the underlying
DBC→close() and txn abort() functions on all the cursors and transactions associated with this
worker without deleting the IDs at the same time.

The ct time member holds the activity timestamp for all the transactions associated with this
worker, as well as for any cursors that are inside those transactions. Transactionless cursors do not
use this timestamp.

The ct dbcs list is used to support the closing of databases that contain open cursors. If the
ct dbs list of open cursors in not empty, the DB→close() handler moves the open cursors from its
list to the ct dbcs list in the ct wrk that is the parent of each cursor. The worker thread checks
this list at the top of its main loop and closes any cursors that it finds on the list.

struct ct_db {

id_int ct_id;

/* next links */

LIST_ENTRY(ct_db) ct_next;

/* head links */

struct ct_dbc_list ct_dbcs;

/* parent link */

struct ct_env *ct_parent;

/* synchronization */

pthread_mutex_t ct_mutex;

pthread_cond_t ct_cond;
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/* local data */

DB *ct_dbp;

time_t ct_time;

unsigned int ct_count;

unsigned int ct_flags;

#define RPCDB_CLOSING 0x01 /* no new uses allowed */

#define RPCDB_RECOVERING 0x02 /* temporarily unavailable */

};

The ct count member is normally a count of the number of requests currently being processed
that directly specify this ct db. However, during the process of closing the database, it is over-
loaded as the count of open cursors. The RPCDB CLOSING and RPCDB RECOVERING flags mirror the
corresponding flags in the ct env structure.

struct ct_dbc {

id_int ct_id;

/* next links */

LIST_ENTRY(ct_dbc) ct_next_txn;

LIST_ENTRY(ct_dbc) ct_next; /* db or wrk */

/* parent links */

struct ct_txn *ct_parent_txn;

struct ct_db *ct_parent_db;

/* local data */

DBC *ct_dbcp;

time_t ct_time;

struct ct_dbc *ct_join;

unsigned int ct_flags;

#define RPCDBC_NO_TXN 0x01

#define RPCDBC_RESULT_OF_JOIN 0x02

};

The ct join member is normally NULL. If the cursor is passed to the DB→join() function then
the ct join member should be set to point at the resulting cursors’s ct dbc structure. As long
as the ct join member is not NULL, the cursor is considered ‘busy’ and will neither timeout nor
be accessible to normal requests. The RPCDBC RESULT OF JOIN flag is set for the cursor that was
created by the DB→join() function. When such a cursor is closed or timed out, all the cursors
whose ct join member points to that cursor must have their ct join member set to NULL at that
time. This provides the proper semantics for timeouts on ‘join’ and ‘joined’ cursors. Note that since
all a join cursor and its members must all be in the same transaction or all transactionless but in
the same worker, finding all the member cursors is merely O(n) on the number of cursors in that
transaction or worker, instead of O(n) on the number of member cursors.

The RPCDBC NO TXN flag is used to indicate whether the ct time member of this structure is in
use: if it is set, then this is a transactionless cursor which has its own activity timestamp in the
ct time member, while if it is reset, then the ct time member of the parent worker
(this->ct parent txn->ct parent->ct time) should be used instead.

While the ct next txn member is a normal ‘next’ pointer for the list of cursors attached to a
given transaction, the ct next member acts as a ‘next’ pointer for one of two different lists; see the
description of the ct dbcs member of the ct wrk structure above for details.
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Mutex Ordering

The hierarchy of mutexes is, in order of locking:

1. The ct mutex member of a ct base env structure or the global db unopened env mutex

2. The ct mutex member of a ct env structure

3. The ct mutex member of a ct db structure

4. The ct mutex member of a ct wrk structure

A thread may not lock a mutex earlier on the list than any mutex it already holds locked. For
those times when a thread needs to move up the hierarchy, it must unlock its current mutexes,
possibly after marking the involved structure as busy in some way, then acquire the higher mutex.

Structure Access Rules

The ct env and ct db structures must be accessible by multiple threads simultaneously. We therefore
need some way of guaranteeing that such a structure doesn’t get closed while another thread is using
it. Such an occurrence indicates a client bug if the close was by request, but a timeout occurring
just as a request comes in will legitimately (if unlikely) bring about this situation.

Our solution is to keep a count of how many requests are currently using each structure plus
a flag to indicate that the structure has started the process of closing down (thus cutting off any
future requests). A mutex protects these and a condition variable is used to synchronize a thread
trying to perform a close with the count being lowered to zero.

A thread that wants to close a structure so protected will lock the mutex, set the flag, then wait
on the condition variable until the count goes to zero. At that point it knows that no requests are
currently using that structure, nor will any future requests do so.

On the other side, when a thread wants to access one of these structures, it locks the mutex and
checks the flag. If a close is in process, then it unlocks the mutex and returns an error as appropriate.
If not, it increments the count and unlocks the mutex. When it is done with the structure, it locks
the mutex again, decrements the count, and unlocks the mutex. If it decremented the count to zero
then it signals on the condition variable in case a close is pending.

While the above works just fine, it doesn’t solve the problem of the entire structure disappearing
from underneath an incoming request that arrives after the close had started. It protects the structure
contents but not the access to the structure itself. We therefore need to guarantee for each method of
getting a pointer to each structure that the obtained pointer will be valid. The key observation is that
we need to ‘chain’ the above access lock onto what lock protects the source of the pointer. When the
pointer is obtained by walking a list of these structures, the thread must obtain the access lock while
still holding the mutex on the list. When the pointer is obtained from the ID database, the thread
must obtain the access lock while the ID subsystem is locking out delete operations. Finally, if the
pointer is another structure’s ‘parent’ pointer, the thread must mark the child structure as ‘busy’.
This has usually already been done as part of the processing of the request, but an exception exists
while processing the DB→cursor() request: when creating a transactionless cursor, the thread must
explicitly obtain an access lock on the parent ct env to guarantee that the new ct wrk structure is
linked in before a simultaneously occurring environment timeout can progress.

Structure Close procedures

In order to maintain the proper invariants in the data structures described above, particular proce-
dures must be followed when closing the structures, whether by request or as the result of a timeout.
While the precise variants have yet to be documented, the following procedures are believed to be
“safe”.
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Closing Environments When an environment is closed or removed, the following steps are per-
formed:

1. id delete wrk() is called. The prevents new requests from using this environment directly.

2. The close routine waits until any ‘in process’ requests that directly use this environment are
complete. This is done by waiting on the ct cond member until the ct count goes to zero.

3. If there are any workers associated with the environment, the close routine tells each one to
shutdown (WRK SHUTDOWN), then waits for the ct wrks list to empty by waiting on the ct cond

member until the ct wrks member is empty. Each worker closes all its transactions and cursors
and then removes itself from the ct wrks list in the ct env.

4. If there are any databases open inside the environment, the close routine closes them. Databases
that were already in the process of closing will be skipped here.

5. If any databases are still in the list, they were already being closed before we got to them, so
the close routine needs to wait for them to finish by waiting on the ct cond member until the
ct dbs member is empty.

6. The actual DBENV→close() or DBENV→remove() routine is called.

7. The ct env structure is pulled from the global list and put on the free list

Idle timeouts can be handled by the same procedure, with the exception that the presence of
‘in process’ requests, workers, or ‘recently’ active databases beneath the ct wrk should abort the
timeout.

Closing Databases Closing a database is complicated by the requirement that doing so closes
all the cursors that are open in it. In the non-RPC case there is a constraint that all the cursors
were created by the thread doing the DB→close(), however the RPC server doesn’t have enough
information to enforce or take advantage of that constraint, so it must be able to handle the general
case of a database close being requested while child cursors belonging to multiple workers are open
in the database. We therefore provide a means for the routine that handles DB→close() to request
the closing of cursors inside that database. This is done using the ct dbcs member of the ct wrk

structure, as mentioned above. When a DB→close() request is received, the following steps are
performed:

1. id delete db() is called. This prevents new requests from using the database.

2. The close routine waits until any ‘in process’ requests that directly use this database are
complete. This is done by waiting on the ct cond member until the ct count goes to zero.

3. The close routine saves a copy of the ct dbp member of the ct db structure and sets the
member to NULL.

4. The close routine then moves each ct dbc structure in the ct db’s ct dbcs list to the list headed
by the ct dbcs member of the cursor’s associated ct wrk. Once all the cursors for a given
worker have been transferred between the lists, the close routine broadcasts on the ct wrk’s
condition variable. It also stores the total count of open cursors in the ct db’s ct count

member. Note that the ct dbcs member of the ct wrk structure is protected by the ct mutex

member of the same ct wrk structure.

5. The close routine then waits for all the cursors to be closed, by waiting on the ct cond member
until the ct count goes to zero.
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6. The actual DB→close() routine is called.

7. The ct db structure is removed from the parent ct env’s ct dbs list and moved to the free
list. If the parent’s ct dbs list is now empty, signal on the parent’s ct cond member.

The same routine handles DB→remove() and DB→rename() requests.

Closing Cursors Closing a cursor proceeds with the following steps:

1. id delete dbc() is called.

2. Remove the ct dbc from its parent ct txn’s ct dbcs list

3. Do the actual DBC→c close()

4. Lock the parent ct db’s ct mutex member.

5. If the RPCDB CLOSING flag is not set in the parent ct db’s ct flags member then the cursor
is in the list beneath the parent ct db’s ct dbcs member and it can simply be removed from
there. At that point the mutex that was locked above can be unlocked, the ct dbc returned
to the free pool, and the close is complete.

6. Otherwise, the parent database is in the process of being closed and this cursor is instead in
the list underneath its worker’s ct wrk’s ct dbcs member.

7. Decrement the cursor count found in the parent ct db’s ct count member.

8. If the count went to zero, signal on the parent ct db’s ct cond member.

9. Unlock the parent ct db’s ct mutex from above.

10. Lock the worker’s ct wrk’s ct mutex member

11. Remove the ct dbc from the worker’s ct wrk’s ct dbcs list

12. Lock the worker’s ct wrk’s ct mutex member and return the ct dbc to the free pool.

13. If this was a transactionless cursor, then lock the ct mutex member of the environment that
this is in and update its ct time active timestamp with the ct time active timestamp for this
cursor.

14. If this worker is now empty, remove it from the ct env’s ct wrks list and move it to the free
list.

Closing Transactions Closing a transaction is the simplest of the lot:

1. id delete txn() is called.

2. Child transactions of the transaction being committed or aborted are recursively committed or
aborted. If any of those fail with error DB LOCK DEADLOCK then the rest of them can be aborted
and the top-level operation is forced to be an abort instead of a commit.

3. Do the actual txn commit() or txn abort().

4. Remove the ct txn from the list under the parent ct txn’s ct sub txns member and add it
to the free list.
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Auto-recovery procedures

While the RPC server provided by Sleepycat with version 3.1.17 performs recovery on all environ-
ments when it first starts up, it has no special handling of recovery after that. In particular, if
an operation returns DB RUN RECOVERY, the client has to close the environment and reopen it with
the DB RECOVER flag. Unfortunately, this doesn’t work if more than one client has the environment
open. Recovery must be single-threaded: running recovery while another thread or process has the
environment open can unrecoverably corrupt the environment. Given that we expect a Boardwalk
system to have each environment open from each Access Server, we need a way to mitigate the
single-threaded recovery requirement.

The overall plan is to unify the environment handles in the server, such that each environment is
only opened once by the server, regardless of how many clients open the environment. If an operation
returns DB RUN RECOVERY, all the transactions and cursors that are open in that environment will be
closed without deleting either the IDs associated with them from the ID database or their ct foo

structures. Once all the underlying cursors have been closed and transaction have been aborted,
the underlying databases will be closed and the environment will be closed and recovered. After
recovery has completed, the previously open databases will be reopened. Meanwhile, all requests
except DBC→close() and txn abort() that attempt to use the cursors and transaction that have
been closed above will receive the (new) DB RETRY status.

The result of the above should be that stateless items, the environment and its databases, appear
unchanged to the client—their IDs are preserved across recovery—while stateful items, transactions
and cursors, have to be closed and built back up by the client.

In order to implement this, when a operations returns DB RUN RECOVERY, the thread which re-
ceived it will attempt to set the RPCBASE RECOVERING flag in the ct flagsmember of the ct base env

structure for the involved environment. If that flag was not already set, then the thread will create
a new thread to perform auto-recovery. That thread will set the RPCENV RECOVERING flag in each
ct env structure and the WRK CLOSEALL flag in each worker to tell it to close its handles. It’ll store
the total number of workers so flagged in the ct count member of the ct base env structure and
then wait on the ct cond member for the count to go to zero. When a worker finishes closing its
handles, it decrements the ct count member, signaling on the ct cond member if the count is now
zero. Once the count is zero, the auto-recovery thread will close the databases and environment and
perform recovery. If recovery succeeds, then it’ll reopen all the databases that were previously open
and update the ct dbp members of the ct db structures and clear the ‘in recovery’ flags set above.
If recovery fails, the server will log the error and shutdown completely.

The handling of transaction ID wraparound is mostly similar to auto-recovery except that instead
(or in addition) to performing recovery, the environment is removed and recreated. This resets
the transaction ID counter. If additional magic is necessary for this, it’ll be handled by the per-
environment thread.

ID subsystem

Requests received by the RPC server reference previously created structures using the ID number
returned by the server when the structure was created. The server needs methods for allocating and
deallocating unique IDs and for mapping them to the appropriate C structures.

Since either the lookup of a current ID or the allocation of a new ID is a necessary condition for
access to a structure involved in servicing a request, these functions are an ideal point for updating
the ‘active’ timestamps that keep structures from being timed out.

Finally, the lookup functions must guarantee that if an ID was successfully mapped to a structure,
then a ‘read lock’ has been taken out on the structure such that it cannot be freed until the thread
that did the lookup has released its lock.

All the following C functions return zero on success and a DB-style error number on failure.
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int id_init(u_int32_t flags, const char *dir);

void id_close(void);

These functions respectively initialize and shutdown the ID subsystem. The flags argument to
id init() is documented below.

int id_new_env(struct ct_env *, time_t, id_int *);

int id_new_db(struct ct_db *, time_t, id_int *);

int id_new_txn(struct ct_txn *, time_t, id_int *);

int id_new_dbc(struct ct_dbc *, time_t, id_int *);

Given a pointer to a structure and the current time, these functions allocate an ID for the
structure, update the active timestamp as appropriate for the structure, and return the new ID via
the last argument.

int id_lookup_env(id_int, time_t, struct ct_env **);

int id_lookup_db(id_int, time_t, struct ct_db **);

int id_lookup_txn(id_int, time_t, struct ct_txn **, struct ct_wrk **);

int id_lookup_dbc(id_int, time_t, struct ct_dbc **, struct ct_wrk **);

These functions map the given ID to a C pointer, take a read lock on the structure, update the
active timestamp with the given time, and return the pointer via the third argument. The fourth
argument to id lookup txn() and id lookup dbc() are used to return the pointer to the ct wrk

structure associated with the ct txn or ct dbc that was looked up so that it may be used for an
inter-thread call. If the ID of a cursor that is involved in a DB→join() is looked up, id lookup dbc()

will return EINVAL.

int id_lookup_dbc_many(unsigned int, const id_int *, time_t,

struct ct_dbc **, struct ct_wrk **);

This function supports the DB→join() request. The first argument is a count of how many
cursors are involved in the DB→join(). The IDs of those cursors are passed in the second argument
as an array. The fourth argument must point to an previously allocated array into which the mapped
C pointers can be stored. This functions performs additional checking to guarantee that the specified
IDs all belong to a single worker thread and that none of the cursors are currently involved in a
DB→join(), returning EINVAL in either of those cases.

int id_delete_env(struct ct_env *);

int id_delete_db(struct ct_db *);

int id_delete_txn(struct ct_txn *);

int id_delete_dbc(struct ct_dbc *);

These functions remove from the ID subsystem the mapping to the given structure. These func-
tions take as an argument the structure involved instead of its ID as a convenience: the former is
always on hand when a mapping is being removed, while the ID is not obviously available while
performing a timeout.

On success, the id lookup txn(), id lookup dbc(), and id lookup dbc many() functions all
return with the ct mutexmember of the associated ct wrk structure locked. This lets them guarantee
that the transaction or cursor will not disappear underneath the request. The id lookup env() and
id lookup db() functions make a similar guarantee by incrementing the ct count member of the
structure being looked up while under the protection of the ct mutex member.
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In our current implementation, the ID subsystem uses an in-memory Sleepycat database, run
as a Concurrent Data Store to provide many-read/single-writer semantics. The flags argument
to the id init() function are a bitwise OR of zero or more of the following DB flags to be used
when creating the DB environment for the ID database: DB USE ENVIRON, DB USE ENVIRON ROOT,
DB LOCKDOWN. The dir argument, when non-NULL, specifies the path of the directory to be passed to
DBENV→open(). Additionally, the ID database itself will be created as an on-disk database in that
directory, allowing debugging and profiling with the standard DB utilities.

The database keys are the ID numbers in 32-bit big-endian format and the values are the pointers
to the associated C structure plus additional information to provide consistency checking, currently
just the type of the structure to which the ID maps. IDs are allocated sequentially, starting at one
(recall that zero is reserved for representing the NULL pointer). If the ID is already present in the
database—the ID space has wrapped around 232 and a long lived ID has been encountered—then
the allocation function simply keeps incrementing until it finds a free ID. The ID allocation functions
not only return the new ID through their third argument, but also store it in the structure itself,
for later use by the deallocation functions. This also provides a consistency check when a lookup is
performed.

The keys are stored in big-endian byte-order so that they sort in ID order. The hope is that by
doing so and using a BTREE database, the insert operation should be efficient. Alternatively, the
keys could be left in native byte-order and a comparison function could be specified. Or, performance
testing could reveal that this just doesn’t matter. The current code uses native byte-order for the
keys. If there’s any chance byte-order would be different on the Access vs. Metadata Servers, this
should be changed.

Locking Calls

The RPC server distributed by Sleepycat supports only a subset of the standard DB library func-
tions, including most of the environment, database and cursors calls. The current version of the
Boardwalk architecture requires support for additional functions, including all of the ‘lock’ fam-
ily of calls: lock detect(), lock get(), DBENV→set lk conflicts(), DBENV→set lk detect(),
DBENV→set lk max(), lock id(), lock put(), lock stat(), and lock vec(). Supporting these
will require that certain additional data structures be represents over the RPC protocol, including
the DB LOCK and DB LOCKREQ structures.

The DB LOCK structure is opaque to the user and can therefore be passed directly over the wire,
though this will require the server and client to have the same sizes for it. Encoding these as IDs
seems simple, but requires the IDs to be stable through the closing of the environment and even past
server restart. An on-disk lock ID database would have to be stored with the environment, which
gets really complicated really fast. Given the relatively small fixed size of the DB LOCK structure,
direct representation seems preferable at this time.

The DB LOCKREQ structure is more complicated to represent in the RPC protocol. If the op

member is DB LOCK GET then the mode and obj members must be passed from client to server, and
the lock member (or the ID representing it, to be precise) must be returned in the reply. If the
op member is DB LOCK PUT then the DB LOCK structure must be passed from client to server, while
nothing needs to be returned. If the op member is DB LOCK PUT OBJ then the obj member must be
passed from client to server with nothing needed in the reply, while if it is DB LOCK PUT ALL then
absolutely nothing additional is needed to be passed either direction. I therefore propose that the
RPC encoding of the lock vec() arguments use a variable length array of a discriminated union.
The resulting request structures would end up being represented in the RPC language parsed by
rpcgen with the following:

struct __LOCKREQ_get {

unsigned int mode;

opaque obj<>;
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};

union __LOCKREQarray switch (int op) {

case DB_LOCK_GET:

__LOCKREQ_get get;

case DB_LOCK_PUT:

opaque lock<>;

case DB_LOCK_OBJ:

opaque obj<>;

default:

void;

};

struct __lock_vec_msg {

unsigned int dbenvcl_id;

unsigned int locker;

unsigned int flags;

__LOCKREQarray list<>

};

On the reply side, the elistp argument will be returned from the server as an offset from the
start of the list of requests. If there are any DB LOCK GET requests, the IDs of the granted locks will
be returned as a list. Note that if the request is only partially successful, the list of lock IDs returned
might not cover all the DB LOCK GET requests that were sent; the client should zero out the DB LOCK

member of any DB LOCKREQ structures in the request list beyond the last successfully processed one,
as determined from the returned elist offset.

struct __LOCKreparray {

opaque ent<>;

};

struct __lock_vec_reply {

int status;

unsigned int elist_offset;

__LOCKreparray locks<>;

};

Control Flow

The threads inside the RPC server can be broken into four groups: request threads, worker threads,
per-environment threads, and server-wide threads. Each group has its own control flow.

Request threads Request threads are created by the multithreaded svc run() routine. They
follow the same RPC request processing flow of control as seen in the single-threaded server:

db serverproc 1() db server svc.c This is generated by rpcgen and performs the XDR decod-
ing, calls the request-specific handler, calls svc sendreply() to XDR encode and send the
reply, and then frees any space allocated by the request and the reply.

db foo 1 svc() (e.g., db txn begin 1 svc()) gen db server.c This simple glue function packs
list arguments in the request into NULL terminated arrays and transforms the single-argument
structure into multiple arguments for the next function. It’s automatically generated by gen rpc.awk.
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foo 1 proc() (e.g., txn begin 1 proc()) db server proc.c This function maps the IDs to
pointers and then either calls the actual DB routine or makes an inter-thread call to the
correct worker thread. If a new worker is needed, this routine requests one from the allocation
code.

Worker threads Worker threads are created by the allocation code, as invoked from a request
thread. Worker threads have four things to do:

1. Handle inter-thread requests by calling through a function pointer passed from a request thread

2. Timeout child transactions and cursors

3. Close child cursors on the behalf of the DB→close() handler

4. Close child cursors and abort child transactions on the behalf of DBENV→close() and server
shutdown handlers

Per-Environment threads Each actual DB environment is associated with a ct base env struc-
ture and a thread. That thread does two things: implement the idle timeout for the ‘instances’ of
that environment (the ct env structures associated with it) and perform auto-recovery. It spends
most of its time waiting on the ct cond member of the ct base env structure for either a timeout
(in which case it checks for idle environment instances) or a signal indicating that a flag has been
set and some special process is needed.

Server-wide threads Two server-wide activities have dedicated threads: the RPC select/poll
loop and the idle unopened environment timeout checker. The former executes the multithreaded
svc run() routine and thereby spawns all the request threads. The latter wakes up once a day and
checks the unopened environment list for environment that have been idle too long.

Condition Variable Usage

Whenever a thread needs to wait for some abstract state to be changed by another thread, a condition
variable and mutex are needed to provide synchronization. In order to avoid ‘lost wakeups’ and
deadlocks, the following four rules apply to all condition variable uses:

1. A thread may not wait on a condition variable unless it has, since it last locked the mutex,
checked all of the state it is interested in.

2. Since spurious wakeups are allowed by the POSIX standard, waiting on a condition variable
must always be wrapped in a loop that checks to see if the state has really changed.

3. If not all of the threads waiting on a condition variable are ‘interested’ in a particular change of
state, then the thread that changed the state must broadcast on the condition variable instead
of signaling on it.

4. A thread must not signal or broadcast on a condition variable unless it has held the associated
mutex since it changed the abstract state. (Taken in a slightly more restrictive reading, this
implies that a single mutex should protect all of the abstract state for that condition variable.)

Given those rules, the basic procedure for waiting for the state to change looks like:
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lock mutex

while (state != what the thread is interested in)

cond_wait(cond, mutex)

do whatever, including possibly changing the state

if this thread changed the state, signal or broadcast here...

unlock mutex

...or maybe here

Memory Management

Memory management is expected to be fairly simple. RPC and XDR structures are allocated and
freed by the RPC code as the requests are received and replied to by the request threads. One
complication exists and is already dealt with by the RPC server code: a few DB routines may return
the same byte-string as was passed to them. To keep XDR from freeing the same memory area twice,
these byte-strings must be duplicated so that the request and reply structures do not share pointers.

In non-multithreaded RPC server code, it is traditional to statically allocate the reply struc-
ture. That obviously doesn’t work in multi-threaded code, so the rpcgen program, when invoked
with the -M flag, makes the reply structure an automatic variable in the serverproc() routine,
db serverproc 1() and calls a new hook, db serverprog 1 freeresult(), to free the reply struc-
ture after the reply is sent.

For the structures that appear in Figure 5.1, simple free pools. Actual worker thread creation and
destruction will be tied to the allocation and deallocation of the ct wrk structures. Worker threads
associated with ct wrk structures in the free pool will just sit waiting for an inter-thread call or a
“kill yourself” request.

Timeouts and Shutdown

Worker threads keep track of and perform timeouts for their associated transactions and cursors.
To this end, the worker thread keeps track of the soonest time a transaction or transactionless
cursors associated with the worker can timeout. Whenever it goes to wait on its condition variable,
if that timeout exists (workers waiting on the free list have no children), then it passes that value
to the call to pthread cond timedwait(). If the worker has no ‘soonest timeout’, then it can just
call pthread cond wait(). If the previous call to pthread cond timedwait() returned ETIMEDOUT,
then before waiting on its condition variable again the worker checks its children transactions and
transactionless cursors to see if any really have been inactive that long, and closes any that have.
At the same time, it updates its ‘soonest timeout’ value to reflect the current state.

The idle timeout on open environments is enforced by the thread for the associated ct base env.
Another thread is responsible for timing out environments that have been created but not opened.

Configuration

Previous versions of the RPC server have not had a configuration file, with all configuration taking
place via command line options. In this version, a standard Sleepycat environment configuration file,
DB CONFIG, will be used to store configuration data for the RPC server itself, though the command
line options will also be supported. To this end, a hook will be added to the DB library internal
db parse() routine to call-out into the RPC server code when, while parsing a DB CONFIG file, it

encounters a configuration option that starts with rpc . Server-wide configuration information will
be obtained from the environment created to store the ID mapping, while certain options may be
overridden by an exported environment’s own DB CONFIG.

The currently planned RPC specific options and their corresponding command line option are:
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rpc server port -P The TCP port on which the server should listen. If zero, the server lets the
RPC system select the port and register it with the portmapper. If not zero, the server will
bind to that port and not register with the portmapper.

rpc server logfile -L The path to the RPC server’s logfile.

rpc environment dir -h The path to a directory that is to be available to clients. The last com-
ponent of the path will be used be clients to specify this environment. This option may occur
more than once.

rpc env idle timeout -I The idle timeout for environments. This value may be overridden in an
environment’s own DB CONFIG file.

rpc def cursor txn idle timeout -t The default timeout for transactions and cursors. This value
is used whenever the create environment request specifies a timeout of zero. The server-wide
value may be overridden in an environment’s own DB CONFIG file.

rpc max cursor txn idle timeout -T The maximum timeout for transactions and cursors. If a
create environment request specifies a timeout greater than this value, then this value is used
instead. The server-wide value may be overridden in an environment’s own DB CONFIG file.

The path to the server-wide configuration environment will be specified using the -D option. Other
debugging options will only be available via the command line. These include -d (enable debugging
output), -R filename (enable and specify RPC packet log), -V (display Sleepycat library version
and exit), and -v (enable verbose startup output).

5.2.5 Unresolved Issues

What error should the server return if a request specifies entities that are in different environments?
What error should the server return if a request specifies a cursor involved in a join? What error

should it return if a request specifies cursors in different workers?
What should the idle timeout thread do if it detects a ‘hung’ request (i.e., the active timestamp

is old but the count is non-zero)?

5.2.6 Problems

There are couple problems with this design. The most subtle is that because the server uses a new
worker thread each time a new transactionless cursor is created with the DB→cursor() request,
it is in general not possible to use DB→join() with transactionless cursors: the constituent cur-
sors will have been created in different threads and therefore be unjoinable. Solving this without
breaking other applications would require the server to not always use a new worker thread for each
transactionless cursor. Note that if two transactionless cursors are created by two different threads
in the client, the server must use different workers threads for those two cursors, otherwise it may
cause deadlock in a correctly threaded application. The only way to safely share a worker thread
between transactionless cursors is for the client to pass a ‘client-side thread id’ to the server with
the DB→cursor() request.

Note that if a transactionless cursor is duplicated (DBC→c dup()) then the duplicate will be asso-
ciated with the same worker thread as the original. Indeed, it is already possible to use DB→join()

with such duplicates, but that’s a very limited set of possibilities.
The only other means for removing this restriction that I can think of would be to modify

the DB ‘core’ itself to weaken the thread constraint (5.2.2) to allow cross-thread use of cursors by
DB→join(), or more precisely, in db join get(), the function that implements the c get method
for join cursors.
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Since the some applications don’t use DB→join() at all, this limitation is acceptable to the
Boardwalk project.

Other situations exist where this design is lenient to threading errors. In the current version of
Sleepycat DB (3.1.17), the DB→close() call may be made when cursors are open in that database,
in which case they will be closed before the database is closed. In a multithreaded application, this
is only legal if all the cursors involved were opened in the thread calling DB→close(). Since the
RPC server has no way of checking that, it will ‘safely’ perform all the cursor closings, even when
they were opened in different threads on the client side. Detecting such an error in the server would
require not only the above expansion of the DB→cursor() call in the RPC protocol, but a similar
change to txn begin() and data structure changes to match.

Note that while a multi-threaded RPC server should be able to handle a single threaded client,
the reverse is not true: deadlock may trivially occur. Single-threaded versions of the server should
therefore return an error when db env create() is invoked with the DB THREAD flag.



Chapter 6

Command Server

The Command Server is designed to be a single control point for implementing state change (policy)
decisions across the entire DI/ODE system as well as a nexus for system monitoring and human
interaction.

The term “Command Server” names both the machine and the server software running on it. It
should be clear from context which is which.

6.1 Configuration

While DI/ODE system components may cache local copies of their control information in configu-
ration files, the master copies always reside on the Command Server. After these files are changed
on the Command Server, a distribution system will push them out to the DI/ODE components.

Files will be distributed to the Access and Metadata Servers using the SSH protocol. The Access
and Metadata Servers will run the SSH daemon, sshd as a stand-alone service.

The / directory of each Data Server will be mounted on /etc/diode/ds/dsname/. Therefore,
updating files on each Data Server will be done by copying them from their location on the Command
Server to their destination on the Data Server’s file system. Remote execution on the Data Server
will be performed using the rsh command. Unfortunately, a more secure mechanism cannot be used
as these are not supported by the Network Appliance Data Servers.

The Command Server stores files for other servers in a local directory hierarchy. Under the
directory /etc/diode on the Command Server are directories for each of the additional server
types: as, ds, and mds. Underneath these directories will be one directory per server, for example,
as001, as002,. . . under the as directory, mds001, mds002,. . . under the mds directory, etc..

6.1.1 Access Server Information

Within each Access Server’s own directory (e.g., /etc/diode/as/as001) several files may be present:

up If this file is present, it indicates that this Access Server is ready for service.

roles This file lists the daemons which should be run on the Access Server, one per line, for example:

app1

app2

63
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logs This file contains a list of log files (with absolute paths) to be retrieved from the Access Server,
one per line.

Also in each Access Server’s directory is the conf subdirectory, which contains the master copies
of all DI/ODE configuration files for that Access Server, to wit, the entire contents of the Access
Server’s /etc/diode directory. These files are:

filesock.conf This file contains a list, one per line, of socket names on which Client Daemons will
be listening for connections from Client Libraries. Each socket name will consist of a protocol
family specifier and protocol family specific addressing, separated by a colon. We will initially
support the “INET” and “UNIX” protocol families. For “INET” sockets, the address will be a
TCP port number followed by an optional “@” and hostname or IP address. If the host part is
not given, the address of the loopback interface is used. For “UNIX” sockets, the address will
be a file path. The following are some legal examples:

INET:12345@localhost

INET:12345@10.0.0.1

INET:12345

UNIX:/var/run/diode.file.1

The number of entries in this file will implicitly provide the number of file-related Client
Daemons which will run on the host. On startup, a Client Daemon will read through the file
trying to bind() to the INET or UNIX socket. If either fails with EADDRINUSE, then it will
proceed down the list until it finds one that is available or it falls off the end of the list.

dbsock.conf This is the Sleepycat analog to the filesock.conf file. This file contains a list of
socket names, one per line, on which Client Daemons will be listening for connections from the
Sleepycat DB library for RPC service. The same restrictions on entries in the filesock.conf

file apply to dbsock.conf entries.

A Client Daemon will be invoked with a command-line flag to start either the file service or
the DB service. Initialization code will read the appropriate servicesock.conf file.

paths.conf This file contains a list of the virtual mount point which the Client Library will use to
determine which paths in the file namespace will be intercepted and redirected to the Client
Daemon. Everything occurring before the double-slash “//” gives the virtual local mount
point between local and remote storage. The part of the path after the double-slash is a
template showing which components are used in the hash computation by the Client Daemon
to determine which Data Server hosts the data and which are ignored. Path components labeled
“%h” are included in the hash, while those labeled “%i” are not. For example:

/var/spool/lpd//%h

/data/web//%i/%i/%h

Note, that %i directories that precede one or more %h directories must exist on all Data Servers.
In this example, if a filename to be accessed is /data/web/a0/d3/131/foo.html, we’d know
since this file exists under the /data/web directory, it belongs on the Data Servers, and that the
Client Daemon should use “131” as the argument to its hashing function to determine which
Data Server stores this particular data. Further, the a0/d3 directory tree should already exist
on each Data Server.
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metakeys.conf This file describes how the Client Daemon hashes a database key to select the
Metadata Server for that key. Each line has four fields, specifying the name of the environment,
the name of the database, and an encoded description of how the key is formatted, and an
expression of which parts of the key are hashed. For example:

database company.db qq 2

database department.db qq 1

database employee.db q 1

database project.db qqq 3

mount.conf This file lists the Data Servers and the mount points that they provide, including
information for calculating the consistent hash. Its format will list one Data Server per line
with five whitespace separated fields. The fields are: Date Server hostname, hash bin number,
local “mount point”, Data Server export path, and Data Protocol. For example:

ds1 1 /var/spool/lpd /data/lpd/as1 nfs3:udp

ds2 2 /var/spool/lpd /data/lpd/old nfs3:udp

ds1 1 /data/web /data/web nfs3:udp

ds2 2 /data/web /data/web nfs3:udp

Column 1, the Data Server hostname is just that, the hostname of one particular Data Server.
When a consistent hash bin set is calculated for each Data or Metadata Server, each of these
is assigned a number to create a unique ordering. Because this is distinct from the Data Server
name, we can migrate away from any malfunctioning Data Server by associating its consistent
hash bin set with a new server. The third column contains the virtual local mount point. Each
entry here should appear before a double-slash in the paths.conf file. The absolute path name
of the files stored on the Data Server are formed by appending the portion of the file path
below the mount point to the absolute path given in the fourth column. The fourth column
by itself represents the export point from the Data Server. The fifth column contains the Data
Protocol and transport to be used. It is there for convenience, as we intend to support only
NFSv3 over UDP for Boardwalk.

metamount.conf The metamount.conf file serves a similar function for the Metadata Servers al-
though its syntax is simpler. Each line in the file represents a logical Metadata Server with the
first column containing the Metadata Server’s name, the second column contains the consistent
hash bin number, and the third column contains the TCP port number on which the Metadata
Server Daemon is listening. A port of zero indicates that the portmapper should be queried to
determine the correct port. For example:

mds001 1 1286

mds002 2 1287

For migration, we need a “before” and “after” view of the Data and/or Metadata Server set.
The “before” set is defined by the mount.conf and metamount.conf files. The “after” set is defined
by the mount.conf.migrate and metamount.conf.migrate files. The differences between the two
files define the migration.
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6.1.2 Data Server Information

Under the ds directory there is, logically enough, one subdirectory for each Data Server named using
the hostname of that Data Server (e.g. ds001, ds002, etc.). Under that directory is a subdirectory
called conf where the files live that are copied into /etc on each of the Data Servers. The files that
reside here include: hosts, rc, exports, and syslog.conf.

Also in each Data Server’s directory is a file named up if that Data Server should be an active
part of the DI/ODE system. Note that the existence of this file does not mean that the system would
be actively used. If a new Data Server is brought online and this file is present it means that this
Data Server is now ready to be added to active service via the Migration process.

6.1.3 Metadata Server Information

Under the mds directory is one subdirectory per each Metadata Server, each bearing the hostname of
one of the Metadata Servers. In each of these subdirectories (for example, /etc/diode/mds/mds001)
may be a file, up, which exists if the Metadata Server is configured and ready for service. Like the
Data Server case, the existence of an up file does not necessarily mean that a Metadata Server is in
service. It is either in service or eligible to be put in service via a Migration process.

In the /etc/diode/mds/servername/conf directory is a file, DB CONFIG. It contains a list of
configuration directives for the Sleepycat DB RPC server. The directory path (not the file path) on
the Metadata Server in which this file is installed will be passed to the Metadata Server Daemon
via the -D option. An example config file would be:

## Default is no logfile

rpc_server_logfile /data/web/server.log

## Default is to obtain a port dynamically and register with

## the portmapper. Specifying a port also disables registering

## with the portmapper.

#rpc_server_port 12345

## Timeouts are in seconds.

rpc_env_idle_timeout 3600

#rpc_def_cursor_txn_idle_timeout 20

rpc_max_cursor_txn_idle_timeout 30

## What environments are exported?

rpc_environment_dir /data/web/sessions

rpc_environment_dir /data/web/authorization

rpc_environment_dir /data/web/content-index

Note that this file is an extended form of the normal DB CONFIG file supported by Sleepycat for
environment configuration.

Each environment that is to be exported by a Metadata Server Daemon may also have its own
standard DB CONFIG file containing directives that are particular to that environment. On the Com-
mand Server, these files will be stored in /etc/diode/mds/servername/conf/environment-DB CONFIG.

6.2 Command Line Utilities

The Command Server will have command-line utilities for performing the following sets of functions.
There will be commands to control Access Servers. Whenever the command takes a hostname

option, the special hostname “ALL” may be given. It does what one would expect.
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asadd hostname Add a new Access Server to the system, initially in the down state.

asstat [hostname. . .] Give the status of the named Access Servers, or all Access Servers if none are
named.

asup hostname Set the state of the Access Server to up.

asdown hostname Set the state of the Access Server to down.

asgetlog hostname Retrieve the log files off of the Access Server.

serviceup app1|app2|ALL hostname Startup of Internet service daemons, via remote execution
of a script on an Access Server. If the “ALL” option is used, all the daemons the Command
Server has configured that system to start will be run.

servicedown app1|app2|ALL hostname Shutdown of Internet service daemons, via remote execu-
tion of a script on an Access Server. If the “ALL” option is used, all diode-ified service daemons
will be shut down on that server.

pushconfig hostname Pushes a copy of the master copies of application configuration files from
the Command Server to an Access Server, overwriting any files which may be present.

diffconfig hostname Show any differences between the master copies of application configuration
files on the Command Server versus those actually installed on an Access Server.

There will be a command to control distribution of objects across back-end servers, to control the
migration process for changing this distribution, and commands to report what would happen in a
proposed migration. This will all be done with the migrate command, whose usages are described
below.

migratecheck ds|mds filename In normal DI/ODE operation, the /etc/diode/mount.conf and
/etc/diode/metamount.conffiles list the names of the operational Data and Metadata Servers,
their hash-bin number (for use in the consistent hashing algorithm), and, for Data Servers, the
exported directory on that machine. For a migration, a /etc/diode/mount.conf.migrate file
(or metamount.conf.migrate file for Metadata Servers) is created. The filename to be checked
is given as an argument on the command line, and it and its .migrate file are interpreted and
the command prints out what data transitions will be made in order to accomplish this migra-
tion. This output can be checked to make sure that the appropriate .migrate file meets the
administrator’s goals. The .migrate file is generated by hand on the Command Server.

migrate ds|mds propagate|begin|continue|doit This command is used to propagate the ap-
propriate .migrate files, transition to phase 1, transition to phase 2, or just do it all.

migrate status Show whether a migration is in progress, what phase it is in, and whether the
sweeper is active or not.

migrate sweeper enable/disable hostname The migration Sweeper process may be temporarily
disabled to reduce the I/O load on the system. It must eventually be re-enabled to complete
the migration.

datamap path Gives the Data Server and physical directory or file corresponding to the given path,
in the application’s namespace.

metamap database key Gives the Metadata Server which holds the given datum.

There will be commands to administer the back-end machines:
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dsadd index Add the Data Server into the Command Server’s state, in the down state.

mdsadd index Add the Metadata Server into the Command Server’s state, in the down state.

dsup index Tell all Access Servers that a given Data Server is up.

dsdown index Tell all Access Servers that a given Data Server is down.

mdsup index Tell all Access Servers that a given Metadata Server is up.

mdsdown index Tell all Access Servers that a given Metadata Server is down.

dsmount Soft-mount the root (“/”) directories of all Data Servers, using the Command Server’s
kernel NFS client.

dsunmount Unmount the above directories.

dsstaydown index Tell the Data Server to disable NFS services, even if it reboots.

mdsstaydown index Tell the Metadata Server to not start the Metadata Server Daemon, even if it
reboots.

These commands will be used for general administration of all nodes:

diodecontrol start|stop Global (re-)start or shutdown of the entire DI/ODE system.

diodestat hostname Retrieve operational statistics from the named server.

diodeupgrade class version hostname Software upgrades/downgrades of other machines.

Lastly, there will be commands for the control of the Command Server itself:

cscontrol start|stop Command Server Daemon control.

csbackup device Perform an online backup of important Command Server data.

6.3 Interactive Command Vocabulary

Most of the above command-line utilities will be short shell scripts which, as appropriate, connect
to a well-known TCP port or UNIX-domain socket on the Command Server (machine), which is
served by the Command Server (process). Other utilities, namely dsmount, dsunmount, cscontrol,
and csbackup, will be shell scripts which don’t connect to the Command Server (process).

6.4 Monitoring

Some statistics about the performance of individual nodes will be available to the Command Server.
What we choose to gather in the initial release will be fairly limited, nonetheless, it should provide
a pretty good view of what’s going on in the system. We divide the monitoring description up via
host type.
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6.4.1 Data Servers

The monitoring information we can obtain from Data Servers is limited by the command set we can
execute on these machines. Basically, it’s limited to the output of two commands.

sysstat The sysstat command takes a single argument, the amount of time (in seconds) spent
aggregating data before the results are printed to standard output. It runs until interrupted
on a per Data Server basis.

nfsstat -h When nfsstat is executed with the -h flag, it prints out information on the NFS v2
and v3 calls received by the server on a per NFS client basis.

These commands are executed on the Data Server directly from the Command Server onto the
Data Server using the Unix rsh utility, for example:
rsh ds1 sysstat 5

6.4.2 Metadata Servers

Statistics will be gathered from the Metadata Servers by remote execution (via ssh) of the db stat

command.

6.4.3 Access Servers

The Command Server provides the ability to query the Client Daemon(s) on each Access Server for
statistics. The following events will be statistically measured:

• Information about Client Protocol requests made by applications, broken out per session.

• Information about DB requests made by applications, broken out per session.

• Information about NFS requests made to Data Servers, broken out by Data Server.

• Information about DB requests made to Metadata Servers, broken out by Metadata Server.

For each of the above areas, the statistics gathered will be:

• Protocol-level statistics on both the client and server side, comparable to nfsstat -cn on a
Solaris server.

• RPC-level statistics on both the client and server side, comparable to nfsstat -cr on a Solaris
server.

• RPC performance statistics on depth of request queues, latency statistics, and bandwidth over
the wire.

6.5 Implementation

6.5.1 Application Structure

The DI/ODE Command Server will be structured as a single Erlang/OTP application. It will rely
on the Client Daemon and its facilities.
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6.5.2 Process Tree

The following are organized under a top-level supervisor.

• Command Session Master: Accepts new command session connections from command-line
tools, and monitors existing sessions.

– Command Sessions: one I/O process converts the I/O protocol into messages on
the socket, another process uses the I/O protocol to parse commands and write
the replies.

• Client Daemon Monitor Master: controls the contents of the Client Daemon table and monitors
the per-Client Daemon processes.

– Client Daemon Monitors: Once process per Client Daemon in the DI/ODE cluster.
Responsible for XappXing a periodic ping to the Client Daemon, polling for events,
alarms, and statistics.

• Ping Listener: listens for detached Client Daemon homing pings, and instructs the Client
Daemon Monitor Master to start monitoring the orphaned Client Daemon.

• Data Server Monitor Master: controls the Data Server table and supervises the Data Server
Monitors.

– Data Server Monitors: Will periodically ping Data Servers, and remotely execute
programs to gather statistics.

• Metadata Server Monitor Master: controls the Metadata Server table and supervises the Meta-
data Server Monitors.

– Metadata Server Monitors: Will periodically ping Metadata Servers and remotely
execute programs, or make RPC calls, to gather status and statistics.

• Access Server Monitor Master: controls the Access Server table and supervises the Access
Server Monitors.

– Access Server Monitors: Will periodically ping Access Servers and remotely exe-
cute programs to get Operating System status and statistics (distinct from those
provided by the Client Daemon Monitor).

• Alarm Handler

• Error Logger

6.5.3 Global Tables

The Command Server has the following ETS tables:

• Client Daemon table

• Access Server table

• Data Server table

• Metadata Server table
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6.5.4 Event and Alarm Handling

In OTP/SASL (Erlang SASL, not RFC 2222 (authentication) SASL), an event is a one-time occur-
rence of importance, and an alarm is a persistent state of importance. Applications have APIs for
generating events and raising alarms. Custom modules can be added to centralized event handlers
to produce behavior that is decoupled from the code that actually generates the events or alarms.

In the Client Daemon, we have a flexible mechanism for being able to raise alarms based on
sequences of events, or generating events based on raised alarms, further decoupling these decisions
from the code that raises them.

The Command Server will poll each Client Daemon for its current alarm state and recent event
history. These alarms and events will be placed into the Command Server’s own alarm and event
infrastructure. Thus, a monitoring tool need only monitor the alarms or events on the Command
Server to see the behavior of the entire DI/ODE cluster.

6.5.5 Report Browsing

Events can be logged to local disk with the log mf h event handler. The Client Daemons will use
this to log events to their local disks, using only a bounded amount of storage. The Command Server
will be able to browse its own local log, and also remotely browse the logs of the Client Daemons.

6.5.6 Crash and Restart

As the Command Server is not necessary for the operation of the DI/ODE cluster, and will not be
redundant in the future, we need a way for a new Command Server to be brought, stateless, into a
running DI/ODE system.

All Client Daemons will expect a periodic signal from the Command Server. If they do not
receive this signal within some time interval, say 10 minutes, they will begin to send a beacon
message (consisting of their Erlang node name) to a broadcast address on the Command Network
or the Data Network. The Command Server will listen for these beacon messages in order to find all
operating Client Daemons, hence Access Servers. The Command Server can then query the Client
Daemons for their File and Metadata Views in order to determine the set of back-end machines and
the current migration state. In this way, the configuration state of a running DI/ODE system can
be dynamically rediscovered by a new Command Server.



Chapter 7

File Migration

7.1 File Migration Problems

Any successful migration scheme must address a number of concerns. First and foremost, it should
permit the I/O subsystem to emulate the semantics of UNIX file systems as closely as possible. In
addition, there are a number of issues the migration scheme must address. These issues are subtle
and end up making the proposals in this section look awfully complex. We enumerate many of them
here to demonstrate why the proposals are as complex as they are.

1. The migration algorithm must be robust in the event of a Client Daemon failure.

2. The migration algorithm must be robust in the event of a Data Server failure.

3. The arbitrary renaming of files and of directories can cause enormous synchronization prob-
lems, particularly when moving a file or directory into a parent, ancestor, or cousin directory.
Coordination with any “sweeper” process(es) used by the algorithm can get evil.

4. It must avoid race conditions between one process writing a file and another process migrating
that file. Similar race conditions occur when a delete operation on a file is attempted while
that file is being read, migrated, renamed, etc.

5. It would be nice if file link counts could be preserved, as well as file and directory st ctime

and st ino attributes. The latter is impossible with NFS, while the former would merely be
handy.

6. The migration scheme should work correctly with NFSv3-based Data Servers. Ideally, it should
not do anything that would be difficult or impossible with Data Servers using NFSv4, DAFS,
or other shared file systems.

7. The migration scheme should be as application-independent as possible. For example, we do
not wish to tie the migration scheme to use the locking mechanism used by applications.

This is not intended to be a complete list. Rather, it’s food for thought when considering the
proposals below.

7.1.1 Why Directory Renaming Is Evil

One of the items listed above concerns stability under arbitrary directory moves. The fundamental
problem posed by such moves is that of obtaining a file or directory handle in the new view that
corresponds to an already open handle in the old view. We have considered various schemes for

72



DRAFT: Boardwalk Design Specification, I/O System 73

doing such a mapping while directory renames are going on and suspect that while possible, the
complexity of such schemes is greater than what we can design and implement confidently in a
reasonable schedule.

7.2 The Freezing Process

An object (file or directory) in the OLD view is said to be frozen if attempts to operate on the object
are prohibited by the Data Server. The attributes used to freeze an object must be distinguishable
from object attributes unrelated to file migration, such as an attempt to write to a file with permis-
sions 0444 by a non-0 UID application during a non-migration period (i.e. the file is “supposed” to
have permissions 0444).

Freezing may also be used to deny read access to an object: setting the object’s permissions to
0000, for example. However, the object migration algorithm will not do this: it can be advantageous,
from an operation latency point of view, to have read-only access to a frozen object.

Specifically for Boardwalk 1.0, a frozen object in OLD should be owned by a UID reserved
specifically for frozen objects, the group ownership will be the object’s “real” GID, and all write
permissions bits will be forced off.

A fundamental assumption about the freezing process is that there is no harm in “refreezing”
an object. More specifically, applying the freezing attributes in the OLD location to an object that
already has them should do no harm. In the case of NFSv3, we know that is true.

Another fundamental assumption about the freezing process is that an object in the OLD loca-
tion, once it has frozen attributes, cannot have those attributes removed. Stated another way, the
object in the OLD location cannot be “unfrozen”. The migration algorithms layered on top of the
freezing process rely on being absolutely certain that once an object in OLD is frozen that it cannot
be subsequently modified.

We also place the restriction on the migration process that once started, it cannot be aborted or
suspended. It must be continued through to completion. Of course, a subsequent set of migration
operations may undo a previous migration.

7.2.1 The Freezing Process, RPC Credentials, and File Ownership

Changes to an object in the OLD location are not permitted during Phase 2 of migration. The only
exception is during the brief period of time when some Client Daemons are in Phase 2 and others
are still operating in Phase 1. There is no contradiction, however, because the Client Daemons in
Phase 1 haven’t yet found out about the change to Phase 2. These phases are presented in detail
beginning in Section 7.5.

The whole purpose for freezing a directory or file is to prohibit any change to that object after
freezing it. Any migration algorithm will fall apart (or at least become much more complex) without
the freezing technique.

The current Client Daemon implementation performs all NFS operations using UID 0 and GID
0 in the RPC call credential. This allows the Client Daemon to emulate all of the file I/O semantics
that the UNIX kernel provides, including the ability of the “root” user to bypass file system security
checks, change ownership of files, etc.

There are two problems with using UID 0 in the RPC call credential. The first is that it’s possible
to accidentally “unfreeze” a file. If a file is frozen, then there must be at least one Client Daemon in
the cluster that is operating in Phase 2. Another Client Daemon, still operating in Phase 1, could
reset the UID of a frozen file, “unfreezing” it.

The freezing process must be able to prohibit operations on objects owned by UID 0. However,
by definition, an NFS operation with UID 0 in the credential bypasses all security checks. There is
an unavoidable race condition where a Client Daemon operating in Phase 2 freezes a file and begins
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migrating it. Another Client Daemon, operating in Phase 1, modifies the file. The result is a file in
the NEW location with possibly bogus data.

Therefore, we cannot use UID 0 in NFS RPC credentials (at minimum) during Phase 1. The
strawman proposal below goes even further: UID 0 RPC credentials will only be used for migration
purposes.

7.2.2 File ownership strawman for Boardwalk 1.0

All files on disk will be owned by the same non-zero UID and GID; call it “diode”. (Of course, the
UID and GID must be numeric, but “diode” is a nice label.) If that creates security problems (one
application fiddling with files “owned” by another), then segregate the mount points for different
apps. If that isn’t sufficient, restrictions could be added to the Client Library and/or the Client
Daemon to enforce segregation.

This “diode” UID and GID should be configurable in a Client Daemon configuration file.
I recommend some sort of Command Protocol addition to pass application effective UID and

effective GID (and secondary group membership) info to the Client Daemon.
If an application’s EUID == 0, then chown() and chgrp() operations are no-ops, always return-

ing success. If the EUID != 0, then chown() always returns EPERM, and chgrp() would either fail
with EPERM or be a no-op success, depending on the process’s group membership list.

All non-migration NFS operations are done using RPC credential containing the “diode” UID
and GID list of the application process. Migration operations may be done using UID “diode” or
UID 0, as necessary.

The UID for frozen files shall be a specially-reserved UID; call it “diode frozen”. Furthermore,
it may be advantageous to have states beyond merely “diode frozen”, and some additional reserved
UIDs could be useful for this purpose.

7.3 Migrating a directory

0. A directory cannot be migrated unless its parent directory is already frozen.

NOTE: Directories above the first hash directory component cannot be migrated. For example,
for a mount specification /var/spool/mqueue//%h, nothing above /var/spool/mqueue/foo

can be migrated.

1. Read the directory’s attributes in the OLD location. If the directory is frozen, your task is
done.

2. Create the directory in the NEW location. If the MKDIR fails with EEXIST, you’ve lost an
honest race with another process migrating the directory, so your task is done.

NOTE: We require that the Data Server’s NFSv3 implementation’s MKDIR operation be
guaranteed atomic in the same why that a GUARDED or EXCLUSIVE file CREATE operation
is guaranteed atomic.

3. Freeze the directory in the OLD location. The NFS SETATTR operation will give you the
directory’s attributes at the instant the file was frozen.

4. If the attributes from steps #1 and #3 differ, then another process changed the directory’s
attributes behind your back. Change the directory’s attributes in the NEW location to reflect
the change.

NOTE: There is no solution to the race between fetching the directory’s attributes in the OLD
location and later freezing it. It is possible for directory’s attributes to be changed in the OLD
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Original Where it’s stored

UID Lower 23 bits of GID in NEW
GID GID in NEW
lower 9 permissions bits Upper 9 bits of GID in NEW
upper 3 permissions bits Upper 3 permissions bits in NEW

Figure 7.1: File Attribute Encoding

location between steps #1 and #3 and then have the party performing the migration fail after step
#3 and before the change step #4 can be performed. We agree to live with this race condition.

NOTE: Throughout this doc, I intentionally make a distinction between migrating a directory
and migrating the contents of a directory. Note that the algorithm above does not make any reference
to the contents of the directory. This is intentional. Migration of a directory’s contents is handled
by separate algorithm(s).

7.4 Migrating a file

0. A file cannot be migrated unless the directory storing the file is already frozen.

1. Read the file’s attributes in the OLD location. If the file does not exist, your task is done. If
the file exists and is frozen, check the file’s attributes in the NEW location. If the mtime in the
NEW location hasn’t been updated “recently enough”, then the Client Daemon migrating this
file has crashed. Use the “tower of locks” algorithm to determine who gets the responsibility
to finish migrating the file.

If the file does not exist in the NEW location, attempt to create (exclusively!) the file in the
NEW location. If the CREATE operation succeeds, you have responsibility to migrate the
file’s contents. If the file creation failed due to EEXIST, you lost the race with someone else
attempting to migrate the same file. As the loser, you must block until you detect that the file’s
migration has finished or that you have detected that the migration stalled and you yourself
have successfully finished migrating the file.

The file in the NEW location is created using the file’s original name, but it is owned by the
migration UID and permission bits 0700. The original permissions bits are encoded in the GID.
This is done to permit recovery if the migrator crashes. See Figure 7.1 for details.

2. Freeze the file in the OLD location. The SETATTR call will return the file’s attributes at
the instant the file was frozen. If the attributes are different from the attributes found in step
#1, then another process changed the file’s attributes behind your back. Change the file’s
attributes in the NEW location to reflect the change.

3. Copy the file’s contents from OLD to NEW locations, sequentially, starting from the first byte
of the file, so the size of the NEW file is a progress indicator, and in the case of a failure of
the migrator, whoever acquires the lock can pick up where the previous migrator left off.

4. Reset UID, GID, and permissions bits in the NEW location to its original values.

5. Unlink the file from the OLD location.



76 Sendmail, Inc. Proprietary Information

7.4.1 EPERM note

Someone operating upon a file while in transit will receive an EPERM error. Since all files on a
Boardwalk 1.0 Data Server are owned by the same UID, EPERM can only mean that the file is in the
middle of being migrated. If the file’s mtime in the NEW location is “recent”, then there’s nothing
to do other than to wait for the migrator to finish the job. If the file’s mtime is not “recent”, then
the Tower of Locks algorithm is used to fight for the right to resume the file’s migration.

Once the file has been successfully migrated, then the original I/O operation can be retried.

7.4.2 RENAME and Migration

Subtleties exist in the migration algorithm with a RENAME (or REMOVE) operation. One might
at first expect that if a RENAME happens right after step #4, and the migrator crashes before step
#5 can be done, then the file will be migrated again later, won’t it?

The answer is no. Both the RENAME and REMOVE operations require that the file must first be
migrated to the NEW location. The RENAME/REMOVE operation must make absolutely certain
that the file does not exist in the OLD location before it can perform the RENAME/REMOVE
in the NEW location. If it does still exist in OLD, then migration was interrupted and must be
completed before performing the RENAME/REMOVE operation in NEW.

Assume for a moment that a file migration was interrupted between steps #4 and #5. Since
the file’s ownership has been reset to normal in the NEW location, it’s possible for the file to be
modified (by WRITE, SETATTR) before anyone notices that the migration was incomplete. When
resuming the migration, if the file in NEW is not owned by the migration user, then you can only
assume that the migration was interrupted between steps #4 and #5: the contents of the file in
NEW may not match what’s in OLD. However, the contents of the file in NEW do not matter: the
process that resumes migration of the file knows the migration was interrupted after step #4, so it
simply performs step #5.

7.5 Migration Phase 0

The Client Daemon operates using old location view mapping and NFS procedures. For notation
purposes, the Client Daemon is using a view called Vold.

7.6 Migration Phase 1

1. The Client Daemon receives a Command Server directive to move to Phase 1 of migration
from Vold to a new view, Vnew.

2. The Client Daemon resets its internal state to perform all new I/O operations according to
the rules of Phase 1, using the views Vold and Vnew.

3. The Client Daemon monitors all pending I/O operations performed using Vold. When they have
all completed, then the Client Daemon may acknowledge that it has successfully completed
the transition to Phase 1.

NOTE: Due to the asynchronous message passing used in Erlang, the implementor(s) must be
careful to be absolutely certain that all pending Phase 0 operations really have completed and that
no “new” Phase 0-style operations are unintentionally performed. The same applies to changes from
Phase 1 to Phase 2.
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7.6.1 Phase 1 Operation Rules

All I/O operations will continue to take place in locations dictated by Vold. However, if a frozen
directory or file is discovered, the Client Daemon will make its transition to Phase 2 as if it had
received the directive from the Command Server. There is no need to look in the Vnew location.

Any operation that fails due to EPERM or ESTALE presents a special problem. EPERM is the result
of attempting to operate on a frozen file or directory, and ESTALE is the result of either unlinking
the file due to migration or unlinking for some other reason. In either error case, the status of the
directory containing the object must be checked for frozen status. If it is frozen, then proceed to
Phase 2, then retry the operation.

There is an invariant that the freezing algorithm provides for directories: the parent directory
of a frozen directory must also be frozen. Therefore, if it is (for whatever reason) inconvenient to
check a parent directory’s frozen status, it suffices to check the status of the top-level directory: if
the top-level directory is frozen, it’s certainly possible that your operation failed due to freezing.
Regardless of the real reason why the operation failed, the Client Daemon must proceed to Phase
2, then retry the operation.

7.6.2 Directory Renaming

The logistics of directory renaming during a migration are tricky. However, the freezing algorithm
ends up making the task easier in some respects.

There are three particularly nasty problems involving directory renaming during a migration.
Both are problematic both during Phase 1 and Phase 2. One is the problem of trying to find a
directory FH (file handle) in the NEW location while that directory is being renamed. (The other is
attempting to resolve paths “above” a current working directory when that cwd or one of its ancestor
directories is renamed and attempting to resolve paths “below” the directory being renamed.)

7.6.3 Other Possible Solutions

For completeness, we discuss here some ideas which deserve to be documented which we will not
implement. Assume (for now) that there is no separate migration phase to coordinate and synchronize
directory renaming while migration is underway. This problem could be solved if such synchronization
were done, but since the synchronization problem is itself difficult, we just won’t go there.

Furthermore, we assume that a directory cannot be renamed in the OLD location while in Phase
2. That would violate a rule of Phase 2 operation: non-migration-related changes to data or metadata
cannot be made to any object in the OLD location. It might be possible to relax that rule specifically
to deal with directory renaming problems, but such an exception would make an migration algorithm
tremendously more complex.

7.6.4 The Boardwalk 1.0 Solution

Before a switch to Phase 2 can be acknowledged, all cache directory FHs must have a counterpart
directory FH in the NEW location cached, too. However, in order to cache a FH, that FH must
exist, which means the directory in NEW must exist. Since we’re in a migration phase, we’ll almost
certainly have to create the directory in NEW first.

In order to create that directory in the proper location in NEW, we need to know its full path
in OLD. We use the getcwd algorithm to walk up the directory tree in OLD, then walk back down
again to make certain that no one has renamed our directory (or one of its ancestors). [NPC: The
”getcwd” algorithm needs to be explained somewhere.] Unlike the typical getcwd algorithm,
however, we will create directories in the NEW location as we work our way back down. As a further
side effect of doing so, each corresponding directory in OLD will be frozen.
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If the getcwd algorithm fails its walk back down the tree, we know someone has renamed a
directory along the way. Fortunately, the directories along the way have been frozen, so further
modification is not possible. The getcwd algorithm is retried from the start, walking up and down
the directory tree again. If the walk down fails again, we know another renaming happened, so iterate
getcwd again. This process continues until getcwd succeeds. The iteration must eventually terminate,
because eventually every single directory in OLD will be frozen as a side-effect, so eventually there
will be no unfrozen directory for a pathological race winner to rename a directory to.

The logistics of implementing cross-directory renaming are so complicated that we don’t know
if the problem is solvable. Therefore, for Boardwalk 1.0, cross-directory renaming is prohibited. No
attempt will be made by Boardwalk 1.0 to differentiate between renaming directories and renaming
files.

7.7 Migration Phase 2

1. The Client Daemon receives a Command Server directive to move to Phase 2 of migration
from Vold to a new view, Vnew.

2. The Client Daemon resets its internal state to perform all new I/O operations according to
the rules of Phase 2, using the views Vold and Vnew.

3. Before acknowledging a transition to Phase 2, all cached information regarding directory and
file NFS filehandles must be updated to include NFS filehandles for corresponding objects in
Vnew. This means migrating each directory and file for which there’s a cached NFS filehandle.
Furthermore, each file in the OLD location cannot yet be deleted.

4. When they have Phase 1 I/O operations have completed and all open file and cached directory
information have been updated with filehandles for objects in their NEW locations, then the
Client Daemon may acknowledge that it has successfully completed the transition to Phase
2a.

5. When all Client Daemons have acknowledged that they have switched to Phase 2a, the Com-
mand Server will issue the command to switch to Phase 2b.

6. While in Phase 2 (a or b), migration of files will be done in an on-demand, “file at a time”
basis. See above for discussion of operation-specific prerequisites, handling of ESTALE & EPERM

errors, etc. (Translation: I’m too lazy to repeat them all here.)

The only operation difference between Phase 2a and Phase 2b is that a Client Daemon may be
able to cache status information while in Phase 2b about objects in OLD locations that it cannot
cache during Phase 2a. It is not necessary to implement such a cache, and in which case, the
distinctions between 2a and 2b are moot.

7.8 Variations on Migration Techniques

It is necessary to determine which NFS operations will trigger the migration of an object. Four
possible criteria are listed here:

1. Any data- or metadata-modifying operation upon the object, e.g. WRITE, SETATTR, RMDIR.
2. Any data- or metadata-modifying operation as well as any READ operation upon a file. Read

operations on a directory object (LOOKUP, READDIR) would not trigger migration of that object.
3. Any operation, including read operations on directories.
4. A migration sweeper.
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In previous discussions about migration algorithms, variations #1 and #2 above give behavior
similar to Jim’s “file at a time” proposal. Variation #3 gives behavior similar to Scott’s “directory
at a time” proposal.

For the Boardwalk release, we propose that criteria #1 and #2 will trigger a migration, and a
special sweeper utility will be constructed that will force migration using method #4.

7.8.1 Migration: “Directory at a Time” or “File at a Time”?

For Boardwalk 1.0 we will use the “file at a time” migration technique. The freezing technique makes
it much more tractable than when it was originally proposed (without freezing).

7.9 Phase 2 Operation Rules

Here’s a list of implementation notes for “file at a time” migration, sorted in operation order.

7.9.1 REMOVE

It seems wasteful to migrate a file, perhaps many megabytes, and then immediately unlink it.
However, all other solutions pondered to date (see revision 1.4 of this doc for a list) have unacceptable
problems. Therefore, the file must be migrated to the NEW location before it can be removed.

The Client Daemon should check if the client application making the REMOVE request also
holds valid file descriptors for that file. If so, the file should instead be renamed using the .nfs*

naming convention in order to avoid ESTALE errors should those file descriptors be used later. Also,
the Client Daemon should take care to remove the temporary file in the event that those descriptors
are closed or the client application crashes.

7.9.2 WRITE

Prerequisite: Since WRITE is a data-altering operation, the file being written must already be
migrated before the WRITE operation can be attempted.

7.9.3 SETATTR

Prerequisite: the target object must first be migrated to NEW.

7.9.4 CREATE

Prerequisite: Since the file being created must be put into the NEW location, it’s no surprise that
the target directory in NEW must exist, which means that the target directory in the OLD location
must be frozen.

A small optimization would be to check in OLD: if something exists with that name in OLD,
immediately return EEXIST. This doesn’t cause races with a migrator: if something by that name
exists in OLD, then it’s either in the middle of migration, so returning EEXIST is correct, or it hasn’t
been migrated yet, so returning EEXIST also correct.

7.9.5 MKDIR

Same situation as CREATE. See above.
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7.9.6 RMDIR

Prerequisite: All of the parent directory’s contents must be migrated before attempting the RMDIR
operation in NEW; complete, recursive migration of that directory’s contents is not necessary.

7.9.7 RENAME

Prerequisites: As discussed earlier, the object to be renamed must be completely, recursively migrated
before the RENAME can take place. Furthermore, the parent directory of the “old” and “new” name
must be the same: cross-directory renaming is prohibited during migration. Also, if something in the
OLD location has the same name as the “new” name (i.e. the RENAME will clobber an existing
file), that something must also be completely, recursively migrated before the RENAME can take
place.

NOTE: An application process, A, should not rename any file that may be open by another
application process, B. If B renames a file held open by A, there is no guarantee that A’s file
descriptor will be valid after the file has been migrated in Phase 2. Applications that have files
opened by multiple processes at the same time are not supported in Boardwalk 1.0.

NOTE: If multiple processes have the same file open, it is possible that the file descriptor
owned by one or more of those processes may become invalid in a race with a transition to Phase
2 and someone simultaneously renaming that file. The solutions to this problem involve suspending
RENAME operations for a period of time or storing an NFS filehandle for the file’s NEW location
in the OLD directory somewhere (or in an external database).

In the interest of conserving development time, this is a problem we’ve reluctantly agreed we
will not solve. We believe that our applications will not cause this problem, therefore a “head in the
sand” approach is sufficient for Boardwalk 1.0. We will revisit this problem if the schedule permits.

7.9.8 LINK

Prerequisites: The original file (1st arg of link(2)) must already be migrated. If the “new” name
already exists in OLD, we can immediately return EEXIST. (This is the same situation discussed in
the cases of CREATE and MKDIR.) If the “new” name doesn’t exist in OLD, then performing the
LINK in the NEW location will race honestly with all other operations in NEW.

7.9.9 READDIR

Nothing special here, other than to state the obvious requirement that the union of directory contents
in the OLD view and in the NEW view is required. Due to races with a migrator, the contents of
the OLD view should be retrieved first.

7.9.10 Other read-only operations

All other read-only operations should first be attempted in the OLD location. If the object does not
exist there, attempt again in the NEW location.

ESTALE and EPERM errors are handled as they are during Phase 1: if they occur while operating
on an object in its OLD location, this is probably a sign that the object has been migrated to its
NEW location. Retry the operation in the NEW location.

7.9.11 Tagging “Migration Done” In Directories In OLD

This isn’t necessary for implementation of the migration algorithm, but tagging is mentioned here in
case it becomes necessary. We can tag directories in OLD to indicate that “contents of this directory
have been completely migrated”.
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Once all of the files from a directory in OLD have been migrated, the ownership of that directory
would be changed from the migrator’s UID to the “contents migrated” UID. (This UID would be
taken from the DI/ODE reserved UID pool.) A directory owned by “contents migrated” would be
interpreted to be frozen (as if owned by the frozen UID).

The benefit of this tag would be to permit caching of migration info: the Client Daemon’s could
avoid LOOKUP operations for files in a directory OLD if they already knew that directory’s contents
had been migrated. Each Client Daemon could cache this info on its own, but using the “contents
migrated” UID could communicate that fact to other Client Daemons.

Like freezing, the “contents migrated” tag cannot be removed or undone.
It may also be beneficial for caching purposes to have another reserved UID, “contents recursively

migrated”. That could prevent unnecessary LOOKUP operations in OLD for intermediate directory
components.

7.9.12 Tagging “Migration Done” In Directories In NEW

Also, it may be useful for a similar tag in the NEW location. Using magic directory UIDs is not
possible in NEW, so I suggest a magic file name, e.g. “.migration complete”.

Since file operations during Phase 2 operate in view order of OLD then NEW, the only beneficial
use of such a status tag would be when the Data Server storing the directory in the OLD view
has crashed: directory operations such as namei, LOOKUP, and LINK could take place without
any information from OLD if we know for certain that a directory’s contents have been completely
migrated to NEW.

This magic file would be filtered from applications’ view by the Client Daemon, and it would be
removed in a cleanup sweep once Phase 3 is entered.

7.9.13 Phase 3 Cleanup Sweep

Whenever an empty directory in the OLD location is found (either by the Phase 2 migration sweeper
or in the normal course of a Client Daemon’s operation), that directory may be removed. This is
safe because each Client Daemon will cache a chain of NFS filehandles for “..” directories.

It may be necessary to have a separate sweeper process run in Phase 3 to remove any straggler
directories that should have been removed during Phase 2.



Chapter 8

Metadata Migration

The metadata are partitioned into migration units which correspond to Metadata Servers. Migration
units are determined by applying the consistent hashing algorithm to an application-specific portion
of the keys of Sleepycat DB records. In the case of metadata redundancy, migration units can overlap
each other; otherwise migration units are non-overlapping portions of the metadata.

For non-trivial metadata migrations, the set of Metadata Servers changes. This requires some
subset of the total metadata to be copied to one or more Metadata Servers (doing multiple copies
of the same metadata is only necessary in the case of redundancy).

Metadata migration employs a multi-phase algorithm, in which Client Daemons transition be-
tween three states under the coordination of the Command Server. The Command Server assures
that at any given time, the set of Client Daemons are in no more than two distinct adjacent states.
The possible states are:

1. OLD Location Only: Normal operation. All instances of metadata are correct and complete.

2. Phase 1, Prepare to Migrate: Metadata edits are done using the old location, just as during
normal operation. However, metadata lookups and reads are checked first in the new location,
in case another Client Daemon is already in phase two of migration and has migrated metadata,
then in the old location. If at any time during phase one a Client Daemon detects that phase
two of migration is in progress, it immediately transitions to phase two of migration.

3. Phase 2, Active Migration: If a metadatum exists in the new location, it is considered authori-
tative, regardless of whether a copy of the metadatum exists in the old location. If a metadatum
exists only in the old location, it is copied from the old location to the new location, then the
copy in the old location is deleted. All metadata modifications take place in the new location.
For every metadatum access, the metadatum is deleted from the old location if a copy still
resides there.

4. Post Migration: Normal operation again. This is the same as Phase 1 except with a new
“View”.

8.1 Phase Change Algorithms

For the following algorithms, MDS is the set of all Metadata Servers before migration begins (old
view) and MDS ′ is the set of all Metadata Servers after migration completes (new view). Other
sets of interest include {MDS ∪ MDS ′} (all Metadata Servers both before and after migration),
{MDS /∈ MDS ′} (Metadata Servers in the old view but not the new), and {MDS ′ /∈ MDS}
(Metadata Servers in the new view but not the old).

82
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The Client Daemon uses the following algorithm to transition from normal operation to phase
one of migration:

1. Receive a message from the Command Server to transition to phase one of migration.

2. ∀{M : M ∈ {MDS ′ /∈ MDS}}:

(a) Call env open. If the environment doesn’t exist, send an error response to the
Command Server’s “change migration phase” request, terminate this algorithm,
and continue with normal operation.

(b) ∀{D : D ∈ D}, where D is the set of databases, call db open. If the database doesn’t
exist, send an error response to the Command Server, terminate this algorithm,
and continue with normal operation.

Note that this implies the requirement that all environments and databases exist on new
Metadata Servers before migration begins. This requirement is due to the fact that the Client
Daemon does not have the knowledge necessary to correctly configure databases for the appli-
cation’s needs.

3. Start using the migration locking algorithms for new lock get and lock put operations. Doing
this before the next two steps assures that at the end of the transition from normal operation
to phase one of migration, all lock operations are using the migration locking algorithms.

4. For all pending lock get operations:

(a) Wait until the lock is acquired.

Note that in the general case, it is possible that this step will never complete. However, some
applications only uses non-blocking lock acquisition attempts. Furthermore, it is generally
considered broken behavior for an application to hold a lock for a long period of time, so we
may never need to solve this problem.

5. For all owned locks:

(a) Acquire the lock in the new location.

6. Transition to checking for signs of second phase migration.

7. Send a response to the Command Server that the Client Daemon is now in phase one of
migration.

The Client Daemon can transition to phase two of migration either due to an explicit request
from the Command Server, or due to detecting that another Metadata Server has already started
phase two of migration.

The Client Daemon uses the following algorithm to transition from phase one of migration to
phase two of migration:

1. Either receive a request from the Command Server to transition to phase two of migration, or
detect that another Metadata Server is in phase two of migration.

2. Fork new cursors for all existing cursors that point to objects that will be migrated.

3. Transition to phase two of migration.

4. If the Command Server sent a request to transition to phase two of migration, send a response
to the Command Server that the Client Daemon is now in phase two of migration.
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The Client Daemon uses the following algorithm to transition from phase two of migration to
normal operation:

1. Receive a request from the Command Server to transition to normal operation.

2. Close all cursors that pointed to objects that were migrated.

3. ∀{M : M ∈ {MDS /∈ MDS ′}}:

(a) ∀{D : D ∈ D}, where D is the set of databases, call db close.

(b) Call env close.

4. Transition to normal operation.

5. Send a response to the Command Server that the Client Daemon is now in normal operation.

For any of the phases of migration, if the Command Server sends a request to transition to the
phase that the the Client Daemon is already in, the Client Daemon sends a response that the phase
transition was successful. This is necessary for two reasons:

1. Since the Client Daemon can automatically transition from phase one to phase two before
it receives a state transition request from the Command Server, the Client Daemon needs to
pretend that it made the phase transition due to the Command Server’s request.

2. A partial system failure such as the Command Server crashing or a transient network failure
may make it necessary for the Command Server to re-send state transition requests to get all
Client Daemons to known states.

8.2 Phase one algorithms

In some cases it is necessary to use transactions to protect operations in the old and new metadata
locations. For these cases we denote the transactions as TO and TN , which are used for the old and
new locations, respectively. The old and new versions of a metadatum are referred to as mO and
mN , respectively.

During phase one of migration, some Sleepycat DB RPC requests must be handled in such a way
as to detect if another Client Daemon has already begun phase two of migration, and in some cases
the requests behave differently. Following is a list of differences from normal operation:

db cursor: If the cursor points to an object in a region that is affected by migration, create cursors
both for the old location and for the new location.

db del, dbc del: These operations avoid migration, since the object being operated on is going
away. The operations attempt to delete the object in both the old location and the new location,
in case there are Client Daemons already in phase two that have written the object to the new
location.

1. Begin TO and TN .

2. db[c] del mO .

3. db[c] del mN .

4. Commit TO if mO exists; otherwise abort TO.

5. Commit TN if mN exists; otherwise abort TN .
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db flags, db re delim, db re len, db re pad, db remove, db rename: Not supported. All
databases are guaranteed to be open during migration, so they cannot be configured, removed,
or renamed.

db get, dbc get: These operations check for other Metadata Servers having made changes in
phase two of migration.

1. Begin TO and TN .

2. db[c] get mO.

3. db[c] get mN .

4. If mN exists:

(a) Abort TO and TN .

(b) Terminate this algorithm.

(c) Execute the algorithm for changing from phase one to phase two of migration.

(d) Run the phase two algorithm for this operation.

5. Abort TO and TN .

mO contains the metadata to be returned to the application.

db h nelem: Inaccurate. Since objects can temporarily exist in two places during migration, there
is the possibility that one or more objects will be counted twice. There is no scalable solution
to this inaccuracy.

db key range: Due to possible duplicates, the result may be less accurate than normal. There is
no scalable solution to this inaccuracy.

db put, dbc put: These operations check for other Metadata Servers having made changes in
phase two of migration.

1. Begin TO and TN .

2. db[c] put mO.

3. db[c] get mN .

4. If mN exists:

(a) Abort TO and TN .

(b) Terminate this algorithm.

(c) Execute the algorithm for changing from phase one to phase two of migration.

(d) Run the phase two algorithm for this operation.

5. Commit TO.

6. Abort TN .

dbc close: Close both Client Daemon-level cursors associated with the application-level cursor.

dbc count: (Not used by some applications.) Inaccurate. A range of objects can be partially
migrated when dbc count is called, which means that one or more objects that the dbc count

operation counts can be both in the old location and in the new location. The count of objects
in the old and new locations is summed, so there is the possibility for objects to get counted
twice.

In order to fix this problem, we would probably want to atomically move all objects with
identical keys during migration. However, dbc count is not used at all by some applications,
so it will not be implemented at all initially.
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dbc dup: Since each application-level cursor actually has two Client Daemon-level cursors associ-
ated with it (one each for the old and new locations), duplicating an application-level cursor
requires duplicating both Client Daemon-level cursors.

lock get: During migration, locks must be acquired in both the old location and the new location
in order to be compatible with normal operation before migration, then normal operation after
migration. Order is important, since we are relying on a consistent locking hierarchy.

1. Acquire the lock in the old location.

2. Acquire the lock in the new location.

lock put: The order of lock release operations is not important for correctness, but releasing the
locks in the reverse order they are acquired reduces the probability of a lock get operation
failing with one lock held.

1. Release the lock in the new location.

2. Release the lock in the old location.

lock vec: This call is composed of one or more lock get and lock put operations. The composed
operations are piece-wise performed as described above (i.e., the first operation in the lock vec

call is performed as described above, then the second operation, etc.). In the general case,
certain groups of operations may be optimizable into single calls to lock vec in both the old
and new locations, but we do not believe our applications use such groups of operations.

8.3 Phase two algorithms

During phase two of migration, some Sleepycat DB RPC requests either must be handled differently
or behave differently than during normal operation. Following is a list of differences from normal
operation:

db cursor: Same as for phase one.

db del, dbc del: Same algorithm as for phase one.

db flags, db re delim, db re len, db re pad, db remove, db rename: Not supported (same
as for phase one).

db get, dbc get: These operations can cause automatic migration.

1. Begin TO and TN .

2. db[c] get mN with the RMW flag set.

3. db[c] get mO with the RMW flag set.

4. If mN doesn’t exist, db[c] put the value of mO to mN .

5. If mO exists, db[c] del it.

6. Commit TN .

7. Commit TO if mO exists; otherwise abort TO.

db h nelem: Inaccurate (same as for phase one).

db key range: Inaccurate (same as for phase one).

db put, dbc put: These operations can cause automatic migration.
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1. Begin TO and TN .

2. db[c] put mN .

3. db[c] del mO .

4. Commit TN .

5. Commit TO if mO exists; otherwise abort TO.

dbc close: Same as for phase one.

dbc count: (Not used by many applications.) Inaccurate (same as for phase one).

dbc dup: Same as for phase one.

lock get: Same as for phase one.

lock put: Same as for phase one.

lock vec: Same as for phase one.



Chapter 9

Future Work

This chapter describes the work that we anticipate in future releases of the DI/ODE system. The
system will be structured to easily accommodate these anticipated features, even in its first release.

9.1 Redundancy Considerations

The most important future feature is the implementation of various types of redundancy. This will
enable a DI/ODE-based system to continue operation without perceptible loss of service when any
back-end system goes down. Though the design work for redundancy isn’t completely fleshed out at
the moment, we do have enough sketched out so that our Boardwalk implementation should make
allowances for this future work.

9.1.1 Types of Redundancy

We will need to implement redundancy for each of the back-end components of the DI/ODE system.

Data Servers

Data Server redundancy is the most important and most problematic of the redundancy schemes.
We need to ensure that replicated copies of data can be consistently and correctly read and written,
in the presence of failures, with only a stock NFS server on the back-end. Lacking support for
multiphase commit, we’ve had to invent other schemes.

Immutable Files Consistency problems are easy when the data don’t change. For immutable
files, we create f + 1 replicas to guard against f failures. Any available replica contains the correct
data. The only subtleties are ensuring atomic creation of the files, and determining when the files
should be deleted.

Mutable Files For mutable files, we create 2f + 1 replicas to guard against f failures, and de-
termine results based on a quorum vote of at least f + 1 available replicas. As we’ve discovered, the
unit of reading has to be a subset of the unit of writing (for comparison and repair), therefore we
restrict updates to be whole-file updates, implemented by moving a new copy into place.

Log Files Log files are append-only files with well-defined records.
Since the log file is mutable, we cannot use the standard stable storage algorithm to ensure

consistency with only two copies of the data. If we need to use the full quorum voting algorithm,
things will suck greatly, since:
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• we’ll have to store this one file three times, increasing disk and I/O consumption;

• we’ll have to copy the entire file before we make our modifications in order to get the atomic
update we need for quorum voting, hence giving O(n2) performance.

However, we can take advantage of the structure of the log file in order to show that a modified
stable storage algorithm is amenable to our needs.

We need atomic appends to avoid partial records. The atomic append scheme needs to be easily
verifiable — it is not acceptable to have to parse the entire log file to see if there is a partial record
at the end or not.

The easiest way to implement atomic append is to have a constant record size — applications
need only check that file length is a multiple of the record size. Failing that, we can either use
an out-of-band value as a record terminator, or create such an out-of-band value by appropriate
quoting of the data. Lastly, we could hold the “committed” file length in a side file, small enough
that length values are written there atomically, which is updated once a log file write has completed.
Partially-written records must be overwritten by the next log append.

The replica repair scheme also relies on an identifiable ordering of records in the log file. The most
reasonable way to handle this is to require that each record start with a log sequence number (LSN),
that will be known to the Client Daemon. Many applications will already have these properties, to
allow log-scanning.

The log redundancy algorithm requires f +1 replicas to tolerate f failures. Log writes are done to
all available replicas. Log reads must be done as a scan. The scan reads from a merge of all available
replicas, merging them by LSN.

Note that faulty replicas can’t be repaired without rewriting the potentially-huge log file. There-
fore, the log storage format is best for short-lived or non-critical data.

We have to be cautious about the problem of multiple writers after a network partition, where
each writer sees its own replica. If LSNs are incremented sequentially, the partitioned writers may
use the same LSN for different records, which will complicate the merge process. To fix this, we’ll
require that part of the LSN will be a monotonically-increasing number within the log file, the other
part a Client Daemon identifier. Upon the repair of a partition, each Client Daemon will scan the
replicas for the highest monotonic part, and use that number uniformly for its next append. The
per-Client Daemon identifier ensures that the merge of all records created during the partition time
will fit into some allowable ordering.

Metadata Servers

Redundancy of the Metadata Servers is easier, since the underlying DB mechanisms are so much more
powerful. With full transactional control of reads and writes, combined with multiphase commits,
we anticipate little problem in adopting the quorum voting 2f + 1-redundant scheme.

Some subtleties may be needed to handle cursors.

Data Network

We will need redundant Data Networks, to ensure connectivity between the Access Servers and the
Data Servers and Metadata Servers, even if the central switch of the Data Network Fails. Due to
limits on the number of cards that we can insert into the target workstations of Boardwalk, we will
limit ourselves to two redundant Data Networks, rather than N + 1 redundancy. The implication of
this is that we do not gain capacity via the addition of the second Data Network. If the bandwidth
requirements exceed that of a single Data Network, then the second one cannot be considered
“optional”, it is now required. In order to help detect this situation, we elect to use only one of
the two Data Networks in the absence of any failure in order to make sure that we have adequate
bandwidth available in case a failure does occur.
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One exception will be made to this policy — having network interface (NIC) cards for each of
the redundant networks helps any node to ride out the failure of a NIC, in addition to the failure of
the switch. Therefore, a host with a failed NIC to the active network may use the standby network.

Problems With the NFS Duplicate Request Cache

There is a problem with this, though, and that is in the way that most NFS servers implement their
duplicate request cache. It is possible for an NFS client to send a request to the server which it
processes and then ACKs. If the ACK is never received by the client, it will think that the operation
was never performed and will resend it. This can result in data corruption on the server.

To mitigate this, the NFS client will resend these requests with the same transaction identifier
as the original request. The NFS server will maintain a list of recently processed IP addresses plus
transaction identifiers. So, if the scenario described above happens, the server will know that the
previous request was completed, will not perform the action a second time, and will just ACK the
request.

However, if the IP address from which the connection is sent changes between the original ACK
being lost and the resend due to the failover of the redundant network, data corruption could result.
Some possible solutions are: IP address alias trickery (might work on some kernels), modifying the
server duplicate request cache to store host names rather than IP addresses, and adding state in the
Client Daemon to attempt to detect these situations.

Non-Redundant Components of DI/ODE

Since the Access Servers are directly exposed to the Internet, we cannot provide redundancy for
them. However, since they are dataless, clients can reconnect to any other Access Server providing
the same service.

The Command Server does not need to be redundant, since it is not critical for operations.
Likewise, the Command Network need not be redundant, as it can fail over to the Data Network.

9.1.2 Implications for Client Daemon Design

The Client Daemon is the multiplexer of I/O, and is the main component that will be changed
to implement redundancy. Largely, the other components will be unaffected by redundancy, with
exceptions as noted below.

General

Client Daemon operations which work on a single back-end entity will have to be modified to work
on a collection of back-end entities. This has implications for both the process model and the data
model.

Redundancy will turn every remote operation that the Client Daemon now performs into an
ensemble of remote operations, each of which may succeed, fail, or time out. With each non-successful
operation or inconsistent result returned, the Client Daemon may have to perform some background
cleanup work. Also, any Erlang process cooperating in this work may encounter a fault of its own.
Therefore, it makes sense to have the actions on each data replica take place within a separate
process. To manage them all, a parent process should maintain links.

The data representations used within the Client Daemon need to be abstract against the creation
of replicas of data. In particular, information about “the location” of data needs to be held at only
a low level.
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Consistent Hashing

Consistent hashing will be modified to return location sets instead of single locations. Since the
application code already has to take migrations into account, we expect that the hashing machinery
should be sufficiently abstract to handle redundancy as well.

File Service

The appropriate place for the data abstraction is in the inode layer.

DB Service

As with the file service, we need to be more abstract in the mapping of migration units to back-end
servers.

RPC Service

Data network redundancy considerations for RPC calls.
The following Sleepycat DB RPC requests are not used by some applications, so support for

them can be safely left until later:

• db join

• db swapped

• dbc count

9.1.3 Implications for Metadata Server Design

Here, we can implement our own duplicate request cache based on hostname rather than IP address.
Normally, this doesn’t make much sense since we’re using TCP as the transport protocol. However,
now we’re specifically guarding against failures that result in the termination of the TCP connection
before the result can be returned to the client. [NPC: Need implications for Data Server as
well, specifically duplicate request cache.]

9.1.4 Implications for Command Server Design

The Command Server needs to juggle a little more state, but fundamentally, things won’t change
much. It still maintains information about each Data Server, Metadata Server, and Command Server.
It also remains in contact with each Client Daemon and Access Server, this doesn’t change. Updates
to Data and Metadata Servers pass through the Client Daemon on the Command Server just as they
do on the Access Server, so the same issues apply to administrative utilities run on the Command
Server as any Client Library linked application on the Access Servers.

Some administrative policy decisions may change, such as migration control in the face of redun-
dant data operations, but the implications of these are TBD.

9.1.5 Implications for Application Design

If all goes well, these changes should be transparent to the application.



Appendix A

DI/ODE Client Protocol RPC
Definition

/*

** This file contains the definition of the DI/ODE Client Protocol.

**

*/

/*

** Mount point definitions.

*/

/*

** DI/ODE status codes.

** Based on the NFS v3 status codes.

*/
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