I What's the Deal with Erlang?

I Introduction to Erlang for Ruby Users of Minnesota
November 26, 2007

Scott Lystig Fritchie
Erlang Hacker
<slfritchie @snookles.com>



Bona Fides

UNIX sysadmin since 1986

Hacked UNIX systems since 1988

~ormer lives: Desktop app developer, UNIX
sysadmin, IP network admin and architect
Returned to software development: currently

using Erlang, C, Tcl, Python, Awk, ...

— Best tool for the job

— Distributed, fault-tolerant, highly-available apps
running in telcos in Japan, China, the Americas




Don't Know Much Ruby...

* But I've visited Matsumoto's hometown:

Matsue, Shimane Prefecture, Japan
Ty i' ‘o ﬂ\ g HW‘F‘ 1 : ;’;l,:., :“:;in

L e

R A e e



Downtown Matsue




I What This Talk Isn't About

* Er-Lang Shen, a Chinese god with a truth-
I seeing third eye.
* Agner K. Erlang, Danish mathematician

oy -
' R a2
| MEETRE I ;'Hi_lgl




I What This Talk Isn't About

* Creating a “Web App” in 53 seconds
I — Not a develop-faster-than-Ruby-on-Rails talk.

— WIill focus on reliability and scalability
* Toss Ruby into File 13, Erlang is
— Please wear your “right tool for the jo

* All-you-need tutorial on Erlang
— Not enough time

he Way!
b” hat

— Check my post to ruby.mn list for pointers



I Erlang History: 1985-1990

* Telephony equipment software sucks
I — Assembly, Pascal, PLEX, EriPascal, ...
— Too much concurrency, hardware too slow
* Language survey: implement a POTS switch

— Same control s/w, any language they could find

- Ada, Chill, Euclid, Smalltalk, PFL, C++ (?), ...
* Over 20 languages included survey

* Result: None are good enough for future
Ericsson telephony products.




* Handle very large # of concurrent activities
I * Soft real-time
* Distribution with heterogenous computers
* Smooth interaction with hardware drivers
* Very large software systems, e.g. > 1M LOC
* Continuous operation: years, not days
* Reconfiguration & upgrades without stopping
* Fault tolerance: hardware and software faults

Original Requirements



Pthreads are evil

* “11 out of 10 people cannot handle threads.”
— source: Andre Pang

* “If POSIX threads are a good thing, perhaps |

don't want to know what they're better than.”
- source: Rob Pike

My apologies for any misattribution.



I Threads Are Evil

* Threads Cannot Be Implemented As a

I Library
- Hans-J. Boehm, ACM PLDI '05, Chicago, IL

- Summary: The POSIX threads spec is fatally
flawed and cannot be fixed by any library.

* The Problem with Threads
- Edward A. Lee, Tech Report UCB/EECS-2006-1
- Summary: Languages must support concurrency
and nondeterminism from the ground level.

* Transactional memory => shared memory!



* All research today on shared memory...
— ... assumes shared memory

Shared Memory is Evil

* How long can you afford to walit for industry

to deliver N cores/machine (then pay for it)?
- N=16, N=64, N =256, ...
° If you can't wait, distributed processing is

your only choice.
- Software-based shared memory is hard.



Meeting the Requirements 1

I * Concurrency-oriented prog. language (COP)

- “Thread” thingies are very, very cheap
* Whenever possible, use 1 thread per concurrent task

— Process semantics: shared nothing
* Preemptive process scheduling
— Simple round-robin scheduling
- Nowadays, 1 Erlang process scheduler per CPU
or CPU core
* All communication via message passing
— Message passing demo



Meeting the Requirements 2

I * Fault tolerance

— Process linking: processes share fate

* Transitive fate-sharing: A <->B <->C
— If A dies, then both B and C die (for the same reason)

* Or fate monitoring: create supervisor hierarchies
— Supervisors: start workers, monitor workers, re-start workers
— Workers: do useful computation

— Default error handler: fatal crash
* “Let it crash” paradigm makes coding simpler
* Someone else will restart you...

— Message passing: asynchronous model



Meeting the Requirements 2b

* Part of “kernel” application supervisor tree

I
kemel_sup
<0280% | | global_group file_server 2 | |nebsup | |ree global_nama_server
| |
e e
usor cH_cpmd alth net karnel <013 0= <[1.14.0a <0150
i
—
B | | <b23ps 230s | |<0240s

<0310




I Meeting the Requirements 3

* Distributed, Heterogenous, Scalable
I = Virtual machine: UNIX, Win, MacOS, Vxworks
- Message passing hides CPU endian-ness
— Intra-VM and inter-VM messaging: same syntax

* Fault tolerance
- Process isolation
— Health monitoring via “link” (“monitor” = 1-way)

— Supervisors provide restart strategies:
* restart child, restart all children, restart some children




Meeting the Requirements 4

— Imagine your s/w running for the next 6 years...

— Hot code upgrade
* VM supports 2 simultaneous running code versions
— And/or use “controlled crashing” for system
reconfiguration
* Kill a process ... and let the supervisors do their job
— Elevator demo

I * Continuous operation



I Meeting the Requirements 5

* Soft real-time
I — Preemptive scheduling
— GC on per-process heaps
— Behind-the-scenes helper threads to avoid
blocking 1/O (e.g. file system interaction)
— Optional process priority mechanism

* Prototyping
— Dynamic type system (contrast to Haskell, ML)

— Declarative style
— Runtime linking and module loading



* Certainly.
I — Who doesn't need high availability, fault
tolerance, scalability?
* But Erlang's design & history hasn't focused
on “the HTTP client/server boundary”.
— Not my specialty, either, sorry.

* Don't let that stop you.
- Mnesia, ODBC driver, Yaws, ErlyWeb, ongoing
efforts with Ajax'y techniques and Adobe Flex, ...

Erlang Suitable For Web Apps?




Joe Armstrong, Guest Speaker

* http://www.esug.org/data/ESUG2006/pres/erlang_in_11_minutes.pdf




I Selective Receive

I * Each process has a single mailbox
* Use patterns to choose first message
I matching the pattern.

foo

C ! foo @
bar
recieive
foo -= true
end,
receive

C ! bar bar -> true
end



Passing a Pid in a Message

* Client/server: the server's reply can be sent
I by anyone.

receive
B ! {transfer,self()} {transfer, A} ->

Al foo
end

receive
{transfer, A} ->

C ! {transfer, A}
end



I * Um, er, ... no.

Anything Like Ruby Gems?

— Ruby's community shines here

* CEAN: Comprehensive Erlang Archive
Network
— http://cean.process-one.net/

* Faxien and Sinan
— http://code.google.com/p/faxien
— http://code.google.com/p/sinan

* Merger in 20087 Maybe, perhaps.



Santa's Concurrency Problem

Santa sleeps until either:

— All 9 reindeer return to North Pole from vacation

— Any 3 of 10 elves request to meet with him

If awakened by:

— Reindeer: Go deliver toys, then release reindeer

- Elves: Attend toy R&D meeting, then dismiss elves
Santa gives priority to reindeer (who hate snow?)

Pick a solution language, any language....

Problem by J.A. Trono, code by Richard O'Keefe

— http://www.cs.otago.ac.nz/staffpriv/ok/santa/index.htm



Santa's Solution 1

* Module preliminaries, top-level functions.

- nodul e(sant a) .
-aut hor (' ok@s.otago.ac.nz'). % Richard A O Keefe
-export([start/0, start/3]).

start() ->
start(9, 10, 1).

start (NunRei ndeer, NunEtl ves, Wit Secs) ->
Santa = spawn_link(fun () -> santa() end),

Robin = spawn_|ink(fun () -> secretary(Santa, reindeer, 9) end),
Edna = spawn _link(fun () -> secretary(Santa, elves, 3) end),
[ spawn_wor ker (Robi n, "Reindeer ", |, " delivering toys.\n", Wit Secs)
|| | <- lists:seq(1l, NunReindeer)],
[ spawn_wor ker (Edna, "EIf ", |, " neeting in the study.\n", Wit Secs)

|| | <- lists:seq(1l, NunElves)].



Santa's Solution 2

* Worker: elves & reindeer are about the same

spawn_wor ker (Secretary, Before, |, After, WaitSecs) ->

Message = Before ++ integer to list(l) ++ After,
spawn_link(fun () -> worker(Secretary, Message, WiitSecs) end).

wor ker (Secretary, Message, WaitSecs) ->

receive after random unifornm Wait Secs*1000) -> ok end, % random del ay

Secretary ! self(), % send ny PIDto the secretary
Gat e _Keeper = receive X -> X end, % await perm ssion to enter
| 0: put _chars(Message), % do ny action

Gat e _Keeper ! {leave,self()}, %tell the gate-keeper |I'm done

wor ker (Secretary, Message, WaitSecs). % do it all again



Santa's Solution 3

* The magic sauce: secretary processes

secretary(Santa, Species, Count) ->
secretary | oop(Count, [], {Santa, Species, Count}).

secretary | oop(0, G oup, {Santa, Species, Count}) ->
Santa ! {Species, G oup},
secretary(Santa, Species, Count);
secretary | oop(N, G oup, State) ->
receive PID ->
secretary | oop(N-1, [PID Goup], State)
end.



Santa's Solution 4

* Santa is quite straightforward now.

santa() ->
{ Speci es, G oup} =
receive %first pick up a reindeer group

{reindeer, G -> {reindeer,G %if there is one, otherw se...
after 0 ->

recei ve %wait for reindeer or elves,
{reindeer, } =T ->T
; {elves, } =T ->T
end

end,
case Speci es
of reindeer -> io:put_chars("Ho, ho, ho! Let's deliver toys!\n")
; elves -> 1 0:put_chars("Ho, ho, ho! Let's neet in the study!\n")
end,
[PID! self() || PID <- Goup], %tell themall to enter

[receive {leave,PID} -> ok end %wait for each of themto | eave
|| PID <- G oup],
sant a().



* Use one process per concurrent activity.
I * Selective message receiving makes life easy.
* Use process links so all processes share fate.

* What if Santa were a Web cache? (think Squid)
- What if each cached URI/object were a process?
— What if each cached URI/object could decide for itself

to implement its own:
* Time-to-live/replacement policy? Refresh itselt? Disk/RAM?

— Starts to sound quite object'ish ... but like the original
Smalltalk, not like OOP languages today.

Santa's Lessons



Newbie Traps and Pitfalls

Variables are not variable: they're bound once!
Not using Emacs/ErlIDE/smart indenting editor
Not using shell for quick edit/compile/test cycle.
Errors/exceptions/exits in the shell Kills stuff.
Using too few processes.

Not learning to decipher nested Erlang terms.
— Error messages usually very helpful, gotta read 'em.

Not knowing the Erlang/OTP docs structure.
— Browser demo.



Unit Tests with Erlang Code

* Pattern matching is your friend: code exactly
what you expect to get, anything else is a bug.

first_256(File) ->
{ok, F} = file:open(File, [read]),
{ok, Data} = file:read(F, 256),
file:close(F),
256 = | engt h(Dat a),
Dat a.

4> foo:first _256("/etc/terncap").
" #HH#HHAH TERMNAL TYPEDE [...]"

5> foo:first _256("/etc/notd").

** exited: {{badmatch, eof}, <-- Reason: got ' eof'
[{foo,first 256, 1}, <-- Stack trace (incl.
{er|l eval,do _apply, 5}, shell internal stuff)

{shel |, exprs, 6},
{shell,eval _| oop, 3}]} **



QuickCheck: Testing Done
Right?

* Free in Erlang or Haskell, commercial in
Erlang (with many enhancements)
- See also: Why Programs Fail, Andreas Zeller
* Specify properties (think invariants), let
QuickCheck generate random data to test
those properties.

prop _revrev() ->
?FORALL(L, list(int()),
|1 sts:reverse(lists:reverse(L)) == 1).



Completely Random Test Data
Isn't Good Enough

* Fuzz testing (ask Mr. Google) experience says that

100% random data isn't effective.
gen_ymd() ->
?LET({Year, Mn}, {gen_year(), gen_nonth()},
{ Year, Mon, gen_dayi nnont h(Year, Mon)}).

gen_year() ->
choose( 1500, 2300).

gen_nonth() ->
choose(1l, 12).

gen_dayi nnonth(Y, M ->

oneof (
[ choose( 1, 28)] ++
[ choose(1,31) || lists:menber(M][1,3,5,7,8,10,12])] ++
[ choose(1,30) || lists:menber(MI[4,6,9,11])] ++

%9 NOTE: we're trusting calendar:is |eap year/1
[ choose(1,29) || (M==2) and calendar:is |eap year(Y)]).



I Testing a Simple Database
I Server with QuickCheck

* Simple memcached-like API
I * Right now has only one operation: set
* Keys are integers 1..50
* Values are integers 1..10
* Server will “crash” if:

— magic key
— magic key
— magic key

Ka = value Ka (e.g. key 3 = val 3)
Kb = value Kb

KC Is set to anything

* QuickCheck demo with shrinking.



