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Abstract

When implementing a distributed storage system, using an algo-
rithm with a formal definition and proof is a wise idea. However,
translating any algorithm into effective code can be difficult be-
cause the implementation must be both correct and fast.

This paper is a case study of the implementation of the chain
replication protocol in a distributed key-value store called Hibari. In
theory, the chain replication algorithm is quite simple and should be
straightforward to implement correctly. In practice, however, there
were many implementation details that had effects both profound
and subtle. The Erlang community, as well as distributed systems
implementors in general, can use the lessons learned with Hibari
(specifically in areas of performance enhancements and failure
detection) to avoid many dangers that lurk at the interface between
theory and real-world computing.

Categories and Subject Descriptors H.2.4 [Database Manage-
ment]: Systems—Distributed Databases; C.4 [Performance of
Systems]: Reliability, availability, and serviceability

General Terms Algorithms, Design, Reliability, Theory

Keywords Chain replication, Erlang, Hibari, key-value store

1. Introduction

A data store, whether a key-value store or file system or other kind
of database, may be distributed across two or more machines for
any combination of the following reasons:

• Availability — It is unacceptable for data to be inaccessible or
lost when a single machine fails.

• Performance — A single machine cannot service its intended
workload within acceptable limits (e.g., minimum throughput
or maximum latency limits).

• Capacity — A single machine cannot physically store the re-
quired amount of data (e.g., RAM capacity or disk capacity).

• Cost — A single machine may be meet all of the above goals
but is too expensive to purchase and/or maintain. Both hardware
and software (e.g., software license fees) are considered.

The challenge of building any distributed, mutable-state service
is managing changes to replicated copies of state data in a pre-
dictable manner. A distributed systems architect might turn to a
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collection of formal specifications and proofs such as Lynch’s Dis-
tributed Algorithms [13]. Unfortunately, translating a distributed al-
gorithm into reliable running code is a subtle, poorly understood
art.

Lamport’s Paxos algorithm [12, 16] is now a well-known dis-
tributed algorithm for maintaining shared consensus, but as staff
at Google [5] and Microsoft [11] have written, it is very difficult
to preserve the algorithm’s correctness and simultaneously reach
performance goals. In the Erlang community, Arts et al. [2, 3] pre-
sented leader election algorithms, their implementations, the testing
methods they used, and the flaws that they discovered long after the
code was considered finished.

This paper is a case study of the implementation of the chain
replication protocol in a distributed key-value store called Hibari1.
In theory, the chain replication algorithm is simpler than the Paxos
algorithm. In practice, however, there are plenty of implementation
details that have hampered creating a product that is both correct
and sufficiently fast. The experience presented here can help others
in the Erlang community and, more broadly, all distributed systems
developers to create robust distributed systems that actually work
correctly.

An outline of this paper’s topics is as follows:

• Summaries of the chain replication technique and of an Erlang
application, Hibari, that uses chain replication for replica man-
agement.

• Practical problems caused by disk latency and the need for rate
control.

• Status monitoring, including how Erlang messaging infrastruc-
ture can hide network failures.

• Hibari’s implementation of consistent hashing and replica
placement strategies.

• Observations about Hibari that don’t merit their own sections.

• Related work and concluding remarks.

2. Chain Replication

The chain replication algorithm is described by van Renesse and
Schneider [24]. The paper specifies a variation of master/slave
replication where all servers that are responsible for storing a
replica of an object are arranged in a strictly-ordered chain. The
head of the chain makes all decisions about updates to an object.
The head’s decision is propagated down the chain in strict order.
See Figure 1 for a diagram of message flows.

The number of replicas for an object is determined by the length
of the replica chain that is responsible for that object. To tolerate f
replica server failures, a chain must be at least f + 1 servers long.

1 In Japanese, “hibari” means “meadowlark.” The two Kanji characters used

for “hibari”, , literally mean “cloud sparrow.”
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Figure 1. Write and read operations upon a chain of length four.

Operations on objects within the chain are linearizable (chap-
ter 13 of [13]) when all updates are processed by the head of the
chain and all read-only queries are processed by the tail of the
chain. Strong consistency2 is maintained because read requests are
processed only by the tail of the chain.

When a chain member fails, the following steps are taken to
repair the chain.

1. The chain is shortened to remove the failed brick (call it B)
from service, and un-acked updates are re-sent down the chain.
All clients are notified about the new chain configuration.

2. When brick B restarts, it is added to the end of the chain, and
all out-of-date keys are copied to B. Meanwhile, brick B is
ignored by all clients. If B receives a client request by mistake,
the request is ignored. (See also section 12.3.)

3. When the key copying phase is complete, the chain is reconfig-
ured to make B a full member of the chain in the tail role, and
all clients are notified about the new chain configuration.

See [24] for a full description of procedures necessary to recover
from chain member failure.

Client workloads with extremely large read/write ratios can po-
tentially imbalance individual server workloads: 100% of read op-
erations are sent to the same server, the tail of the chain. The chain
replication implementation in CRAQ [22] allows read operations
to be handled by other servers in the chain without violating strong
consistency. Hibari does not use CRAQ’s optimizations but instead
uses data placement policies to balance server workloads; see sec-
tion 11 for more detail.

3. Hibari Overview

Hibari is a distributed, fault tolerant, high availability key-value
store written in Erlang. Through use of chain replication (sec-
tion 2), all operations by Hibari clients read strongly consistent up-
dates. Hibari is one of the few distributed key-value stores that can
atomically update multiple keys in a single client operation (sec-
tion 9). By default, all updates are persistent: each server flushes all
updates to local stable storage before replying to a client.

2 Read operations can only return an object’s last update.
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Figure 2. Hibari logical architecture: consistent hashing, chain
replication, and basic storage.
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Figure 3. Hibari architecture: an alternate view of Figure 2 with
each physical brick represented in a vertical column.

Hibari faithfully implements the chain replication algorithm
as described in [24]. Erlang’s messaging model makes it trivial
to support the original algorithm’s asymmetric message passing
for updates. Local data logging, inter-server messaging, and chain
replica repair (after the failure of a server) are implemented as
described.

Hibari’s performance is typically quite good, individually and as
a cluster. On typical commodity 1-2U rack-mountable server hard-
ware, Hibari can sustain a throughput of several thousand updates
of 1 kilobyte values per second per server. Clients see throughput
increase linearly as servers are added to the cluster.3

High availability is achieved by using replication chains longer
than one server and by reacting quickly (e.g., within a few seconds)
when a server fails. Availability is further assisted by distributing
keys across the cluster using consistent hashing: when a chain has
failed, all keys managed by other chains are unaffected by the
failure. Also, machines may be added to or removed from Hibari
clusters without interrupting service.

3.1 Physical and Logical Bricks

A brick is a server that stores persistent data. Figures 2 and 3 por-
tray a cluster of five physical bricks (mapping one-to-one onto
physical machines, typically Linux-based) with five replication
chains. Each chain is of length two; the chain’s data is available
for reads and writes as long as the total number of failures within
the chain is less than two.

3 Assuming that chains are evenly balanced across physical machines; see
also section 11.



CREATE TABLE foo (
BLOB key;
BLOB value;
INTEGER timestamp;
INTEGER expiration_time; -- 0 = no expiry
ERLANG_PROPERTY_LIST proplist; -- Usually empty

) UNIQUE PRIMARY KEY key;

Figure 4. SQL-like representation of a Hibari table.

As far as Hibari Admin Server (see section 7) is concerned, data
is stored by a “logical brick.” The five physical machines, called
“physical bricks,” in Figure 2 are each configured with two logical
bricks. The logical bricks are striped across the physical bricks
so that each physical brick contains one logical brick in a “head”
role and one logical brick in a “tail” role. Using consistent hashing
(section 3.3) and techniques described in section 11, each physical
brick’s CPU, RAM, and disk workloads will be in balance under
most conditions.

The Admin Server monitors the status of each logical brick.
If a physical brick crashes, then clearly all logical bricks on that
machine will fail. The reason for a physical brick’s crash is not
usually important: any hardware failure, such as power supply or
disk volume, that disrupts a logical brick is sufficient to trigger
reaction by the Admin Server.

If deployed on virtualized hardware, “physical brick” could
mean either the physical hardware or the virtualized hardware. Vir-
tualized hardware complicates management of the actual physi-
cal locations of logical bricks. Hibari’s current code base does not
make any attempt to enforce replication on distinct physical bricks.
During development, it is useful to test clusters of hundreds or thou-
sands of logical bricks on a single physical machine (with or with-
out hardware virtualization). But right now, it is ultimately a hu-
man administrator’s responsibility to ensure the physical diversity
of each logical brick within a chain.

3.2 A Client’s View of a Hibari Cluster

Each key-value pair is stored in a Hibari table. Tables were first
implemented to provide separate key namespaces, that is, to per-
mit storing the key "foo" multiple times, each in a different table.
Later, tables became a convenient administration tool for config-
uring behaviors such as consistent hashing (section 3.3) and key
migration (section 10).

Data in a Hibari table is stored in one or more chains. Each
chain stores data for only one Hibari table. Each logical brick stores
data for only one Hibari chain. Figure 3 depicts a typical layout for
chains for a single Hibari table; see section 11 for discussion of
replica placement strategies.

Each key in a Hibari cluster has the attributes depicted in
pseudo-SQL in Figure 4; technically, each key stored by Hibari
is actually part of a 5-tuple. Going forward, the more familiar term
key-value pair will be used instead, and the other attributes will be
mentioned only when the context requires it.

Each Hibari client receives status updates from the Hibari Ad-
min Server that contain server status updates. Using the mapping
data within each status update, each client knows the head and tail
bricks for all chains in all tables within the cluster. Clients usually
send their requests directly to the correct brick and do not incur
intra-cluster query forwarding penalty, except during cases of key
migration (also called key repartitioning, see section 10).

All attributes in Figure 4 except value are always stored in
RAM by the logical brick. The value attribute may be stored on
disk or in RAM as a per-table configuration option. As a result,

Hibari logical bricks can consume a lot of RAM, proportional to
the number of keys stored in the brick and (for RAM-based value
blob storage) the sum of all value blob sizes.

3.3 Consistent Hashing

Hibari uses a consistent hashing technique [10] to map a {T , K}
tuple to the name of the chain that is responsible for storing that key
K in table T . The key K, or configurable prefix of K, for example,
the first 4 bytes, or all bytes between the first two ASCII ‘/’ (slash)
characters, is hashed using the MD5 algorithm4 and mapped onto
the unit interval [0.0, 1.0). The unit interval is divided into an
arbitrary number of ranges, where each range represents a chain
name. Each chain can appear one or more times in the range map.
The top third of Figure 5 depicts a range mapping of two chains
onto the unit interval; each of the two chains has an identical chain
weighting factor. (The bottom two-thirds of Figure 5 is discussed
in section 10.)

The relative size of each range is determined by the chain
weighting factor. Assume a hypothetical chain mapping where the
chain weighting factor for chain C1 is twice as large as the weight-
ing factor for chain C9. The sum of the size of range interval(s)
found in the range map will be twice as large for chain C1 as
the sum for chain C9. Smaller weighting factors can be used to
bias distribution of keys away from some chains (and therefore
away from some physical bricks/machines) that have lower capac-
ity (e.g., slower CPU, less RAM, or smaller disk capacity).

Two hash mappings are used to implement key migration (or
key repartitioning). In normal operation, the maps are the same.
During key migration, the maps are used to calculate the current
and new/desired location of a key. Key migration is a dynamic,
online process that can expand or shrink a cluster as well as to
change the relative chain weighting factors.

3.4 Single Data Center

Hibari was designed to provide strong consistency within a single
data center. All deployments to date are in a single data center. A
Hibari chain can have members in multiple data centers, but there
are several practical complications in such a scheme:

• By definition, each update operation must traverse the entire
replication chain. If chain members are in different data centers,
each update operation will pay a penalty of the sum of the wide-
area network latencies of all network links between the data
centers.

• A client application in data center D1 that attempts to read a key
stored by a tail brick in data center D2 must pay the penalty of
the wide-area network latency between D1 and D2.

• The Hibari Admin Server is not currently designed to run si-
multaneously in multiple data centers.

4. Problems with Disk Write I/O Latency

All distributed systems architects have to face the tough facts of
economic reality: if a system costs too much, then it won’t be built.
Deployment on cheap-enough hardware can also mean deployment
on not-fast-enough hardware. The pressure of meeting performance
goals can make cutting algorithmic corners very tempting. Archi-
tects must never forget that any change to a distributed algorithm,
no matter how small or innocent the change seems, may in fact
invalidate the algorithm.

For the purposes of this paper, “big data” means that the total
amount of data and metadata stored (including all replicas) is larger

4 MD5 was chosen for convenience and relatively low computation cost.
Neither the larger output range or collision resistance of more recent cryp-
tographic checksum algorithms is necessary.
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Figure 5. Consistent hashing map after two migrations: 2 chains, then 3 chains, then 4 chains. All chains have equal weighting factors.

than the sum of RAM in the cluster. The price of RAM-based and
flash RAM-based storage is too high for many big data applica-
tions. Only traditional hard disks are cost-effective enough to sup-
port free or advertising-supported applications such as email ser-
vices. Free email services now routinely provide email users with
storage quotas in the range of 1-25 gigabytes per user, with “unlim-
ited” storage available at extremely low monthly fees.

Rotating disk media can provide total storage capacity at a low-
enough cost for most big data applications, but their average ran-
dom I/O operation latencies are quite high: at least 4 milliseconds
for top-of-the-line, 15K RPM SCSI disks and at least double that
amount for slower, cheaper disks. As a result, it is in any applica-
tion’s best interest to minimize the number of random I/O opera-
tions that it generates.

The write-ahead log technique has been used by database sys-
tems for decades to aggregate disk write operations, minimizing
random disk I/O operations by appending log entries to a log file.
Another common technique is group commit, which flushes many
transactions’ worth of log entries to stable storage with a single
fsync(2) system call (or OS equivalent).

Hibari uses both techniques, a write-ahead log and group com-
mit, to minimize random disk I/O required to store reliably all up-
dates received by a brick. The latency penalty of the fsync(2) sys-
tem call is required to avoid data loss in the event of a cluster-wide
catastrophe, such as a data center power failure.

Systems calls, such as write(2) and fsync(2), that operate
on local file systems can block for tens of milliseconds (or more)
per call. Such blocking delay is unacceptable in almost any latency-
sensitive application. To solve this problem, each gen server-
based Hibari logical brick sends all write and sync requests to a
central write-ahead log (WAL) process (shared by all logical bricks
on that Erlang node) to request write(2) and fsync(2) system
call execution. The gen server process is then free from blocking
to work on other tasks while the I/O operations are pending. The
WAL process sends messages back to the brick when the I/O calls
have finished.

The chain replication protocol already requires that each write
operation have a serial number associated with it and that each
update propagates down the chain in serial number order. The WAL
process uses these serial numbers to signal to each brick the largest
serial number that has been safely flushed to disk. Each brick can
then send those updates to downstream bricks at its leisure.

Unfortunately, Hibari’s early implementations of the communi-
cation between brick and WAL server processes were fraught with
subtle, difficult-to-find race conditions: writes were written to the
local WAL out of order, fsync(2) operations were acknowledged
with wrong log serial numbers, and bricks sent log replay messages
downstream in incorrect order. The QuickCheck software testing
tool [17] has been invaluable for helping create the conditions nec-
essary to exploit the very small windows of vulnerability of many
of these bugs.

Many of the bugs above have caused data loss. Most would
never have been created if the code could ignore the reality of deal-
ing with slow disk devices. Few data buffering hacks go unpun-
ished.5

5. Problems with Disk Read I/O Latency

Each Hibari data server maintains key and key metadata in RAM
but stores value blobs either in RAM or on disk. For big data pur-
poses, Hibari must store value blobs on disk. As a consequence,
any client ’get’ or ’get many’ operation may trigger disk I/O.
If the available cache is too small, and/or if the client application’s
access pattern doesn’t provide sufficient temporal locality of refer-
ence, then disk read I/O operations are inevitable.

Hibari tries to minimize the number of disk operations required
to read a key’s value blob by always storing in RAM the value
blob’s exact storage location: write-ahead log file number, starting
byte offset, and blob size. The brick can read any value blob with a
single pair of lseek(2) and read(2) system calls.

Hibari’s ’get’ and ’get many’ operations are not the only
source of disk read I/O workload. Two more significant sources
are the following.

1. Chain repair — Chain repair can generate a huge amount of disk
read I/O. For each value blob that a brick under repair does not
have, the upstream brick must read the blob from disk before
sending it downstream to the repairee brick.

2. Key migration — Sometimes called key repartitioning, reshard-
ing, or rebalancing, the Hibari key migration process moves
keys (and associated values and metadata) from one chain to
another (see section 10). Any key that must be moved during a

5 Borrowed very loosely from Patrik Nyblom.



key migration must have its value read from disk by a brick in
the source chain before it is copied to the destination chain.

5.1 Read Priming

As described in section 4, many system calls involving the local file
system can block the caller. Any file open(2) or read(2) system
call has the potential to block a Hibari logical brick process for
many milliseconds each. On extremely overloaded systems, each
call can easily take over 100 milliseconds, which in turn can have
enormous negative effects on latency-sensitive applications.

To avoid blocking brick processes with read-only disk I/O,
Hibari borrows techniques used by the Squid HTTP proxy [19] and
Flash HTTP servers [15]. Before a brick attempts to open or read
a file, it first spawns a “primer” process that asynchronously opens
the file and reads the desired data. This process acts like adding
water to a pump to “prime” the pump: all necessary file metadata
and data is read into the OS page cache. The primer process uses
the standard Erlang file API to do its work. When finished, the
primer process sends a message to the logical brick process that
the priming action is complete. Then the brick process can read the
blob (using the same API) with very little probability of blocking.

This priming technique has the disadvantage of reading the
same data twice: once by the short-lived primer process and once by
the long-lived brick process. However, even with value blobs up to
16 megabytes in size, the overhead isn’t big enough to worry about.
The major advantages are that the Erlang file module already
supports all operations that the primer process requires, and the
probability of blocking the brick process is reduced to practically
zero. The reduction of average read latency significantly outweighs
the disadvantages.

5.2 Access by Lexicographic vs. Temporal Orders

For both chain repair and key migration workloads, the primer
technique only hides a portion of the latency required to read large
numbers of value blobs from disk. Both workloads generate I/O
based on the lexicographic sort order of the keys. However, the
value blobs are stored on disk in temporal order, that is, relative to
the time when they were received.

The mismatch between lexicographic and temporal orderings
can create a significant amount of random I/O workload, as far as
the underlying disks are concerned. For key migration workloads,
the I/O cost is largely unavoidable. Brick repair times can take a
few seconds or several days, depending on several factors.

• If the brick under repair was down for only a short time, the
total number of keys that require repair is likely to be small,
and their value blobs are likely to be in the OS page cache.

• For a brick that is completely empty (e.g., a new machine with
a new, empty file system), a manual function is provided that
transmits keys and value blobs in an order that is sorted by each
value blob’s location within the write-ahead log. The sorting
can help reduce the amount of random pattern read disk I/O
required to read a large number of value blobs. The savings can
be very significant when the total size of value blobs is in the
range of hundreds or thousands of gigabytes.

• For repair tasks that fall in the middle, the number of keys to
repair is high, but the cost of starting repair completely from
scratch is even higher. In this middle case, there is no choice
other than wait for the standard repair technique to finish and
to accept the amount of random read disk I/O required to do
it. For a chain that contains a terabyte of data or more, the time
required to finish chain repair can be minutes (best case), hours,
or even days (worst case). System planners and operations staff
must keep this in mind as they plan their data redundancy

strategy, that is, how big should each brick be and how long
should each chain should be.

6. Rate Control

Modern hard disks are orders of magnitude slower than other com-
ponents in the system: CPU, RAM, system buses, and even com-
mercial gigabit Ethernet interfaces and switches are all less likely to
be the slowest system component. To avoid overloading disk sub-
systems even further, rate control mechanisms are necessary to con-
trol anything that can generate disk I/O.

Hibari has explicit controls for both batch sizes (e.g., number of
keys per iteration of an algorithm loop) and bandwidth (e.g., total
number of bytes/second) for the following.

1. Chain repair operations, key migration operations (see sec-
tion 5), and number of primer processes for prefetching value
blobs from disk.

2. Log “scavenging” operations, which reclaim space from Hi-
bari’s otherwise infinite-sized write-ahead log. The scavenger’s
activity can create a large amount of extra disk I/O, more than
enough affect clients by increasing latency. See the Hibari Sys-
tems Administrator’s Guide at [9] for a detailed description.

During key migration periods, it is possible for a client’s request
to be forwarded back and forth between a key’s old chain location
and its new chain location. This forwarding loop is usually quickly
broken once the key has been stably written to the new chain. If
a forwarding loop is detected (using a simple hop counter), an
exponential delay is added at each forwarding hop to try to avoid
overloading bricks in either chain. Also, the loop will be broken if
the total number of hops exceeds a configurable number.

Hibari also has an implicit limit on the number of simultaneous
client operations that a single brick can support. The simple tech-
nique is borrowed from SEDA [26]: if the client request is too old,
then drop the request silently. Sending a reply to the client will cre-
ate even more work for an overloaded server to do, so the cheapest
thing to do is to do nothing. Each Hibari client request contains a
wall clock timestamp. If that timestamp is too far in the past, the Hi-
bari brick will ignore the request, assuming that the request waited
in the brick’s Erlang mailbox for so long that the brick must be
overloaded.

To help synchronize system clocks, it is strongly recommended
that all Hibari machines, servers and clients, run the NTP (Network
Time Protocol) service. Synchronization down to the femtosecond
is not necessary; all clocks within even 100 milliseconds is good
enough. However, deployment on virtual machines, such as Xen
or VMware, should be avoided unless the guest OS’s clock can
reliably match the host OS’s clock (which is assumed to be stable).

Unsynchronized guest OS clocks can cause bricks to drop client
requests silently, via the mechanism described two paragraphs ear-
lier. The silent drops cause client-side timeouts that can be very
confusing, unless you happen to be looking at “operation too old”
counter statistics. That counter should only ever increment during
periods of server overload; any other time is a near-certain symp-
tom of unsynchronized OS clocks.

7. Cluster Management and Monitoring

The original chain replication paper [24] describes a single mas-
ter server that is responsible for managing chain state and moni-
toring the status of each server within each chain. To be accepted
commercially, however, single points of failure must be avoided or
minimized to the greatest extent possible.

Hibari implements the single master entity as a single Er-
lang/OTP application that is managed by the Erlang kernel’s “appli-
cation controller.” The application controller coordinates multiple



Erlang nodes to run the management/monitoring application, the
Admin Server, in an active/standby manner. This indeed creates a
single point of failure: if the machine running the active Admin
Server instance crashes, the Admin Server’s services are lost.

Failure of the Admin Server is not usually a significant problem.
The Admin Server is required only when bricks crash or restart
within the cluster, or if an administrator wishes to query cluster
status or to reconfigure the cluster. Without the Admin Server,
Hibari client nodes may continue operation without error, as long
as other bricks also fail while the Admin Server is down.

The Admin Server requires approximately 10 seconds to restart.
The Admin Server’s private state (including histories of the down/-
up status of each logical brick and chain) is also distributed across
bricks within the cluster. If the Admin Server’s private state were
managed with chain replication, then there would be a “chicken
and the egg” problem when the Admin Server bootstraps itself. To
avoid a circular dependency, the private state is replicated using
quorum voting-style replication.

7.1 Detecting Brick Failure and Network Partition

The original chain replication paper [24] makes two assertions that
are extremely problematic in the real world. The first is “Servers are
assumed to be fail-stop.” The second is “A server’s halted state can
be detected by the environment.” If either assumption is violated,
the system can quickly make bad decisions that can cause data loss.

The biggest problem with detecting halted nodes is the prob-
lem of network partition. Partitions are usually caused by failure of
network equipment, such as an Ethernet switch or failure of net-
work links such as a telecom data circuit. However, any failure of
hardware and/or software that creates arbitrary message loss can be
considered a network partition.

With message passing alone, it’s impossible to tell the differ-
ence between a network partition, a failed node, or merely a very
slow node. The built-in Erlang/OTP message passing and network
distribution mechanisms cannot adequately handle network parti-
tion events by themselves.

To fix the worst problems caused by network partition, Hibari
includes an OTP application called “partition detector.” Running
on all Hibari servers, the sole task of this application is to monitor
two physical networks, the ‘A’ and ‘B’ networks, for possible
partition. All Erlang network distribution traffic is assumed to use
network ‘A’ only. UDP broadcast packets are sent periodically on
both networks. When broadcasts by an Erlang node are detected on
network ‘B’ but have stopped on network ‘A’, then a partition of
network ‘A’ may be in progress.

The Erlang/OTP application controller can still make faulty de-
cisions when a network partition happens; the application con-
troller does not interact with partition detector application. How-
ever, after the application controller restarts an Admin Server in-
stance, the partition detector application can abort the initialization
of that instance when it believes there is a partition in effect, raise
an alarm, and leave the Admin Server processes in an idle state.
This situation must then be resolved by a human administrator.

7.2 Fail Stop Means . . . Stop?

Violation of the “fail stop” assumption have also caused problems
for Hibari. Hibari’s sponsor, Gemini Mobile Technologies, is not
responsible for day-to-day operations and monitoring of its cus-
tomer’s systems, so all we know and theorize comes from after-
the-fact analysis of failures in customer lab or production systems.
In these post mortem analyses, we identified two significant prob-
lems:

1. A bug within the Erlang/OTP ’net kernel’ process that can
cause deadlock and thus cause communication failures between

Erlang nodes. One instance of this bug hit a customer’s sys-
tem on at least 10 different machines within a 30 minute in-
terval, including both nodes that managed the Admin Server’s
active/standby fail-over.

2. System ’busy dist port’ events can trigger interference in
process scheduling and extremely high inter-node messaging
latencies. All Erlang messaging traffic to a remote Erlang node
is sent through a single Erlang port which represents a TCP
connection. If the sending node detects congestion (e.g., a slow
receiver, intermittent network failure), then any Erlang process
on the local node that attempts to send a message to the remote
node will be blocked: the Erlang process is removed from the
scheduler and will remain unschedulable until the distribution
port is no longer congested.

The combination of ’net kernel’ deadlock, wild variations
in message passing latency, and process de-scheduling can create
a situation that is difficult to diagnose. If a brick is merely slow to
respond to status queries by the Admin Server, Arpaci-Dusseau et
al. suggest calling it “fail stutter” [1]. But if the brick responds too
slowly, the Admin Server may interpret a performance problem as
a failure instead.

One such problem, affecting both the Admin Server node and
many others within a cluster, caused Hibari’s largest deployment to
suffer from multi-hour transient availability failures. If a brick does
not respond to a status query by the Admin Server, it is considered
failed and removed from the chain. A few seconds later, the brick
would catch up and answer new queries. The Admin Server would
force the brick to crash, triggering automatic repair and eventual
rejoining the chain. If the situation is bad enough, the chain can be
(and has indeed been) whittled down to zero bricks.

One solution to this problem has been a small patch to the
Erlang virtual machine to make the buffer size for inter-node
network distribution ports configurable. The default size of the
erts dist busy constant is 128 kilobytes. However, even a value
of 4 megabytes appears to be too small for the amount of messaging
data that Hibari bricks send during bursty traffic patterns.

Another solution uses information from Hibari’s partition -
detector application to supplement the monitoring info that the
Admin Server uses. If a system monitor ’nodedown’ message is
received, the partition detector’s state is queried to check if a net-
work partition was a possible cause of the message. The same is
done if a query of a remote brick’s general health status fails due to
timeout or ’nodedown’ reasons.

In hindsight, the single Admin Server process has had more
problems in production than we had anticipated. The solutions
outlined above have not been in use long enough to judge their
effectiveness. However, given the problems that we know have
happened in production networks, it is likely that a distributed
manager application would likely have been fooled by the same
conditions and made similarly bad decisions.

7.3 The Admin Server as a Single Entity

The single running Admin Server instance has a convenient conse-
quence: behavior during network partition events is easy to reason
about. An administrator knows where the Admin Server might run:
all eligible nodes are configured statically, so there are (typically)
only two or three machines where the Admin Server may be run-
ning. Furthermore, using Figure 6 as an example:

• If an entire chain is on the same side of a partition as the
Admin Server, then Chain 1 is healthy and usable by Client 1.
Client 2 is the far side of the partition and therefore cannot
access Chain 1.



Brick 1 Brick 2

Brick 3

Brick 4

Brick 5 Brick 6

Client 1

Client 2

Admin Server

Network

Partition

Chain 1

Chain 2

Chain 3

Figure 6. A network partition scenario.

• If the entire chain is on the far side of the partition relative to
Admin Server, then Chain 3 is healthy and usable by Client 2.
Client 1 is the far side of the partition and therefore cannot
access Chain 3.

• For chains that are split by the partition, the bricks on the same
side of the partition as the Admin Server will be reconfigured
into a new chain. In Figure 6, Chain 2 will be reconfigured to a
chain of length one that contains only Brick 3. The new Chain 2
is accessible by Client 1 but not by Client 2.

The CRAQ paper [22] proposed a distributed chain monitor-
ing and management scheme. Hibari’s Admin Server pre-dates the
CRAQ paper and therefore couldn’t take advantage of its sugges-
tions.

8. Erlang Messaging Is Not Reliable

The original chain replication paper [24] says, “Assume reliable
FIFO links.” There is no such thing in the real world. Erlang’s
messaging model is frequently described anecdotally as “send and
pray.”

The original chain replication paper says that the tail of the
chain, after processing an update successfully, acknowledges the
update back “upstream” all the way to the head. These acknowledg-
ments are vital for chain repair purposes. The Hibari implementa-
tion avoids the cost of an acknowledgement per update (which can
be as high as several thousand updates per second per chain) by
using a once per second acknowledgment that contains the largest
update serial number that has been processed by the tail.

The once per second optimization is fine if all communication
links are indeed reliable and FIFO. However, Erlang’s communica-
tions links are not reliable.

Svensson and Fredlund describe in [21] under what conditions
the usually-reliable messaging between two Erlang nodes can turn
unreliable. It is possible for a brick to send three updates down-
stream, with serial numbers S1, S2, and S3, respectively. It is pos-
sible for the Erlang network distribution mechanism to deliver the
messages containing S1 and S3 and drop the message containing
S2. In this situation, a Hibari tail brick might acknowledge serial S3

as the last processed serial number, and the head brick will mistak-
enly assume that the S2 update has been processed by all members
of the chain.

Fortunately, the Erlang process monitoring BIF monitor() will
deliver a {’DOWN’,...} message to the receiver when the connec-
tion between nodes has been broken and may have dropped mes-
sages. Hibari now uses this mechanism to detect dropped messages.
If a {’DOWN’,...} message is received, then subsequent replica-
tion log replay messages must pass a series of strict sanity checks.
If the checks fail, then the receiving brick will crash itself.

Sample key Data stored in value blob

/42/1 Text of post #1
/42/1/1 Text of comment #1 on post #1
/42/1/2 Text of comment #2 on post #1
/42/2 Text of post #2
/42/summary Next post number, number of active

posts, number of deleted posts, . . .

Figure 7. A sample Web blogging application’s posts table.

It is imperative that all bricks replay all replication log messages
in exactly the same serial order. By crashing immediately, the brick
that first notices a dropped message will avoid propagating out-of-
order messages downstream. Hibari’s automatic chain repair will
compensate for the lost message.

9. Micro-Transactions

Though not mentioned in the original chain replication paper
[24], [22] mentions the possibility of implementing a “micro-
transaction”: an atomic update of multiple keys by a single transac-
tion in certain limited situations. All update operations are sent to
the head of a chain, and the head can make any decision it wishes,
including a non-deterministic decision.6 Therefore, the head can
decide on the fate of multiple operations that are sent in a single
client request: “commit” by applying changes for all operations in
the request, or “abort” by applying none of them.

Hibari has implemented a similar transaction feature. A client
can send multiple primitive query and update operations in a single
protocol request to a Hibari data server. The limiting factor is that
all keys for the primitive operations in the request must be keys
that the brick is responsible for. This limit is the reason for using
the word “micro-transaction” instead of “transaction.”

To implement request forwarding, for example, when a client
sends a request to the wrong brick, each Hibari brick is already
aware of what range of keys it is responsible for. Micro-transactions
introduce a second reason why Hibari bricks must maintain this
awareness: if a brick detects that a micro-transaction attempts to
operate on keys stored in multiple chains, the micro-transaction
must be aborted.

To use micro-transactions effectively, the client application
must be aware of the key prefix scheme used by each table. It
is the client’s responsibility to create micro-transactions where all
keys are managed by the same chain. This implicit knowledge
could be made explicit by changing the client API: add a parameter
to specify the consistent hash string, similar to a “bucket” in the
Riak client API [18]. By using either implicit key prefixing or an
explicit bucket-like grouping, the client controls whether any two
keys must be stored in the same chain.

For example, assume a need to build a simple Web blogging
application. On a per-user basis, the application requires storage for
user authentication data, biographical data and preferences settings,
blog postings, and comments on blog postings. The blog postings
and comments would be stored in a single table called posts. The
hashing key prefix, configured when the posts table was created,
would be a variable prefix delimited by two slash characters.

See Figure 7 for example keys that would be stored in the posts
table for user #42. The value of the /42/summary key would
contain metadata for the user’s collection of postings: the number to
assign to the user’s next post, the number of active/undeleted posts,
the number of deleted posts, etc. All comments for post #1 would be
retrieved by a ’get many’ operation with the {binary prefix,

6 Non-deterministic choices are mentioned in [24].



add_new_post(UserID, PostText) ->
Prefix = "/" ++ integer_to_list(UserID) ++ "/",
MetaKey = Prefix ++ "summary",
{ok, OldTS, OldVal} =

brick_simple:get(posts, MetaKey),
#post{next_id = NextID, active = Active} =

OldMeta = binary_to_term(OldVal),
NewMeta = OldMeta#post{next_id = NextID + 1,

active = Active + 1},
PostKey = Prefix ++ integer_to_list(NextID),
%% replace op: Abort if the key does not exist
%% or if current timestamp /= OldTS.
%% add op: Abort if the key already exists.
Txn = [brick_server:make_txn(),

brick_server:make_replace(MetaKey,
term_to_binary(NewMeta),
0, [{testset, OldTS}]),

brick_server:make_add(PostKey, PostText)],
[ok, ok] = brick_simple:do(posts, Txn).

Figure 8. Example code to add a new Web blog posting using a
micro-transaction.

"/42/1/"} option to limit results to only those keys that have a
prefix that matches post #1’s comments.

To create a new posting, the micro-transaction feature would
be used to keep the metadata in the summary key consistent despite
races with other metadata updates. A simple function, without error
handling code for sake of simplicity, is shown in Figure 8.

10. Automatic Key Partitioning and Migration

Some key-value stores in the open source world [14, 23] do not
include automatic support for key partitioning (also called “key
sharding”): they assume the client will implement it. Unfortunately,
coordinating the actions of many distributed clients in a 100% bug-
free manner is a very difficult task.

Other distributed storage systems place significant restrictions
on key migration/repartitioning. For example, the MySQL Cluster
RDBMS did not support repartitioning until April 2009, and then
only to expand the size of the cluster [20] — reducing cluster size
was not supported.

Reducing cluster size is a valuable feature. Also, support for
heterogeneous hardware is very desirable. It is nearly impossible
to buy the same hardware more than three months after a system
has been deployed in the field, much less three years or more in the
future.

The original chain replication paper [24] is silent on the subject
of key migration. Hibari provides support for key migration as well
as support for heterogeneous hardware. Both are accomplished by
its consistent hashing implementation.

Each Hibari server and client node maintains two complete
consistent hashing maps for each Hibari data table: one old/current
map and one new map. During normal operations, the two maps are
identical. However, during a key migration period, the two maps
will be different: the current map describes where keys are stored
in the current scheme, and the new map describes where keys are
stored in the desired scheme.

The bottom two-thirds of Figure 5 shows an example of the
chain mappings used to migrate a table from two chains to three
chains and later four chains. A key K1 with an MD5 hash that
maps to 0.1 on the unit interval would be stored in Chain 1 and
would not move in either key migration. A key K2 with an MD5
hash that maps to 0.49 on the unit interval would initially be stored
on Chain 1. The first key migration would move K2 from Chain 1

to Chain 3. The second key migration would move K2 from Chain
3 to Chain 4.

The method demonstrated in Figure 5 attempts to minimize key
movement and to evenly distribute migration workload. However,
the Admin Server API permits the flexibility to choose arbitrary
map definitions for a key migration. As a planning tool, an API
function is provided to calculate how many keys would be moved
between all pairs of chains, given a specific hash map.

Hibari’s key migration is performed dynamically, while all
bricks and clients are in full operation. The chain head brick selects
a “sweep window,” a range of keys (in lexicographic sort order),
and copies the keys to their respective destination chains. When all
destination chains have acknowledged successful writes, the sweep
window is advanced, and the process repeats. All chain heads per-
form key migration sweeps in parallel. Operations by clients on
keys inside the sweep window are deferred until the sweep window
advances.

Due to the realities of message passing asynchrony, it is pos-
sible for clients to send queries to the wrong brick in the wrong
chain. Each brick will determine if a query has been sent incor-
rectly and, if so, forward the query to the appropriate brick. Most
forwarding involves only one extra hop or are loops that exist for
very small periods of time (typically much less than one second).
The forwarding delay and maximum hop mechanism described in
section 6 take care of rare, long-lived forwarding loops.

Hibari’s key migration implementation is currently missing a
feature requested by at least one customer: the ability to halt a mi-
gration. If the I/O workload caused by migration causes severe la-
tency problems for normal Hibari client applications, the customer
wishes to suspend migration until peak client workload subsides.

Aborting a migration entirely would be much more difficult.
The sweep key mechanism would have to “run backward”: a sweep
of the key space in reverse order would send each key-value pair
from its destination chain backward to its source chain. Rather
than implement this complex feature, it is much easier to permit
the current migration to map Mn to finish, and then trigger a new
migration to map Mn+1 where Mn−1 = Mn+1 to move all keys
back to their original location.

11. Replica Placement

Terrace and Freedman [22] have discussed replica placement strat-
egy: where should various chain members be located physically
and logically? For example, all replicas within a chain should not
be within the same physical data center rack: rack-wide power fail-
ures and network outages are too common, even in well-managed
data centers.

One of chain replication’s nice features is that it doesn’t make
many demands on replica placement policy, giving an administrator
great flexibility. For example, a Gemini customer decided that chain
lengths of three would be sufficient to meet its availability goals.
The Hibari default replica placement arranges bricks within chains
as if the underlying physical machines were in a ring: chain 1 uses
machines A → B → C, chain 2 uses machines B → C → D, and
so on. In the case of 26 physical machines, the final chain would use
machines Z → A → B. (See also Figure 2 for an example of a
ring of five machines.)

Using the above ring strategy, the resources of each machine
are likely to be used equally: each physical machine would host an
equal number of head, middle, and tail bricks. This balance was
pleasing to the customer. However, the operations impact of key
migration did not appear so pleasing when considering expanding
the size of the cluster. If the new machines are inserted into the ring
between A and Z, then the machines nearby, that is, machines A,
B, Y , and Z, will endure greater load caused by key migration than
the other 22 original nodes.



Original Machines Original Machines New Machines

Machine A Machine B Machine C Machine D Machine E Machine F Machine G Machine H Machine I

Head0 → Middle0 → Tail0. Head3 → Middle3 → Tail3. Head6 → Middle6 → Tail6.

Tail1. Head1 → Middle1 → Tail4. Head4 → Middle4 → Tail7. Head7 → Middle7 →

Middle2 → Tail2. Head2 → Middle5 → Tail5. Head5 → Middle8 → Tail8. Head8 →

Figure 9. Replica placement using groups-of-3-machines strategy: start with six machines, then add three more. Machines that maintain
head bricks are bold-faced to highlight the striping pattern.

This customer decided to use a different placement strategy,
called groups-of-three-machines strategy. For each Hibari table,
a group of three chains is striped across a small group of three
machines. This process would repeat until all machines were ac-
counted for. See Figure 9 for an example. The result provides equal
workload sharing: each machine still has an equal number of head,
middle, and tail bricks. Also, adding new machines (in groups-of-
three) will create a balanced workload during key migration: as-
suming that all chain weightings are equal, then roughly 50% of all
keys in chains on machines A through F will migrate to chains on
machines G through I .

On top of the groups-of-three placement strategy, the customer
is free to use rack-aware placement also. For example, each physi-
cal machine in a group-of-three can be placed in a different rack.

12. Other Observations

This section contains a number of observations about Hibari’s im-
plementation and production deployments that don’t merit entire
sections to themselves.

12.1 Using gen server

Hibari’s implementation makes heavy use of the Erlang/OTP
gen server behavior, largely because its serial method of han-
dling messages maps very well onto the serialization that a well-
behaved chain replication server must do. However, a single Erlang
process cannot consume more than a single CPU core’s worth of
computation resources. Due to Hibari’s one-to-one mapping of log-
ical bricks to Erlang processes, an administrator who wishes to take
full advantage of multi-core and multi-CPU systems must provi-
sion more chains than strictly necessary so that many logical bricks
will be assigned to a single physical brick.

The extra logical bricks come at a cost of management com-
plexity. The Admin Server now must keep track of more bricks
and chains than is otherwise strictly necessary. The overhead of
monitoring each brick is small, but when monitoring a few thou-
sand bricks, the total cumulative workload can cause problems.
The biggest single bottleneck is updating the Admin Server’s pri-
vate state storage bricks. For the sake of simplicity, updates to the
private state bricks are serialized. When a cluster with over 3,000
logical bricks are booted simultaneously, the number of state tran-
sitions that are generated each second can exceed the state storage
bricks’ maximum update rate. A future release of Hibari will fix
this problem.

12.2 Chain Reordering

Chain reordering doesn’t appear in either the original chain repli-
cation paper [24] or the CRAQ paper [22], but it’s valuable from
an operations perspective. As originally described, a chain can be-
come reordered by the failure and repair of member servers. In the
long term, such reordering can destroy an administrator’s intended
balance of workload across hardware resources.

For example, if a chain is configured as B1 → B2 → B3 and
brick B2 fails, then after repair is finished, the chain’s order will

be B1 → B3 → B2. If brick B1 fails later, the chain’s order will
be B3 → B2 → B1 (again, after repair). Without reordering, the
chain will remain in this order until yet another brick fails. Hibari,
however, will reorder the chain back to B1 → B2 → B3 once the
repair of B1 is complete.

12.3 Key Timestamps

Each key in a Hibari server has a timestamp associated with it.
Each server enforces a rule that each update must strictly increase
the key’s timestamp. This feature prevents multi-client races that
attempt to update the same key. The timestamp can also be used
for “test and set” behavior, which will abort a micro-transaction if
the key’s current timestamp does not exactly match a timestamp
observed in an earlier operation.

Key timestamps have subsequently become extremely impor-
tant for optimizing brick repair. Other projects such as Dynomite
[7] and Riak [18] use Merkle trees to quickly calculate which keys
two servers share.

Hibari uses a simple “I have”/“Please send” iterative protocol to
identify keys that need repair. Each key and its timestamp are sent
in the “I have” phase. Because all keys and timestamps are stored in
RAM, no disk I/O is required (by either the upstream/online brick
or the downstream/repairing brick) to complete the “I have” phase.
Disk I/O (to retrieve value blobs) is required only for keys that are
missing or out-of-date on the downstream brick.

12.4 Read-Ahead

Read-ahead optimizations by the operating system’s disk subsys-
tem can often degrade performance. Most of Hibari’s read-only
disk operations are random in nature across mostly small pieces of
data, usually only a few kilobytes each. Read-ahead mechanisms
that try to read hundreds or thousands of kilobytes merely create
higher latency for all disk operations.

There is one case where Hibari could use very aggressive read-
ahead buffering by the OS: during brick initialization’s sequential
scan of the brick’s write-ahead log. The Erlang virtual machine
does not support system calls like fadvise(2) and mincore(2),
so it has no custom control over read-ahead behavior. We have not
yet been desperate enough to try using the newer R13B Erlang NIF
feature or an older-style driver to implement these system calls, but
we probably will, someday.

12.5 File Checksums

Hibari stores all log data on disk with MD5 checksums. Any data
corruption detected by an MD5 checksum will cause a brick to
take itself out of service. Automatic chain repair will identify the
keys lost due to corruption and re-replicate those keys. The bad file
is moved to a separate directory to prevent future access. By not
deleting the bad file, Hibari hopes to avoid reusing the bad disk
block(s) that caused the original problem.

Unlike GFS [8], Hibari’s network messages are not yet pro-
tected by checksums. It is possible for a bit error to escape the net-
work protocols stack’s checksum regime and affect Hibari clients
and/or downstream bricks.



12.6 Murphy’s Law

Anything can and does happen in a production environment. The
“impossible” is possible, and if something can go wrong, it will.

In one memorable case, the Erlang/OTP “kernel” application’s
error logger process was overwhelmed by over 85,000 error mes-
sages that were triggered by Erlang’s system monitor() BIF in un-
der one minute. We know that such system messages can be gen-
erated extremely quickly by the Erlang virtual machine. Hibari’s
process that receives the system events will only forward 40 events
per second to the error logger. 7

So, how can a process that throttles itself to generate only 40
error messages/second send over 85,000 messages to error logger
in under one minute? After all, (40 messages/sec)(1 minute = 60
seconds) = 2,400 messages. Intensive code review of the rate limit-
ing mechanism has found no fault. And we know for certain that all
85,000 messages were generated in under 60 seconds. This mystery
will probably never be solved.

12.7 Other observations

• It is too easy, especially when subject to schedule pressures, to
shoot yourself in the foot with Erlang. Code with side-effects
is difficult to understand, to test, and to support . . . yet manage-
ment of side-effects (i.e., mutable state) is Hibari’s reason for
being. If we were to rewrite Hibari from scratch, we would be
extra careful to segregate code with and without side-effects to
simplify testing by QuickCheck and other tools.

• An early implementation decision for Hibari, left ambiguous by
the original chain replication paper and discarded by the CRAQ
paper, was that any single logical brick can be a member of only
one chain. In hindsight, it was a good decision. The complexity
of implementing the key migration logic for a logical brick that
stores keys for multiple chains would have been painful.

• Hibari relies on Erlang’s network distribution service for all
significant cluster communication. The short term impact is
positive: Erlang message passing “just works.”8 The long term
impact is negative: nobody knows the largest practical size of a
single Erlang cluster. To build a Hibari cluster with thousands
of nodes, we may have to move away from Erlang’s built-in
messaging or, perhaps, re-write Ericsson’s network distribution
code.

13. Related Work

Citations of related work have appeared throughout the paper;
however, a few other prior works should be mentioned.

As described in the introduction, others have written about the
experience of implementing distributed algorithms; citations of [3,
5, 11] only scratch the surface of recent publications. Any Erlang
developer who attempts to implement a distributed algorithm from
scratch or modify one should read [2] and [21] before starting.

Consistent hashing was introduced by Karger et al. in [10].
The technique has become popular for replacing central directory
services for many key → location mapping needs. Central directory
servers, in most cases, run on a single host and are therefore a
single point of failure for availability and also a likely performance
bottleneck.

Amazon’s Dynamo distributed hash table [6] uses a layer of
indirection in its consistent hashing implementation. Hibari’s im-
plementation is quite similar. The main differences are in naming
and that Hibari’s number and size of hash interval partitions can be

7 The message flow is: Erlang VM → system event receiver process →

error logger process.
8 An important exception is described in section 8.

changed by using key migration. Also, Hibari’s hash partition sizes
may be heterogeneous, as demonstrated in Figure 5.

Replica placement is the main topic of [25] and is also discussed
in [8] and [22]. The Cassandra distributed database has plug-in
API [4] that helps encourage experiments with different placement
policies.

14. Conclusion

Using the Hibari distributed key-value store as a case study, we
have shown that the path from a pure, proven algorithm to real-
world implementation is not smooth. Most of the problems we’ve
encountered with Hibari, both with implementation correctness
and with performance, apply not only to Erlang but all distributed
computing environments.

We all share the same limitations, such as hard disk drives that
grow ever slower relative to the computers they are paired with,
failure-prone networks, the maximum speed of light, the funda-
mental properties of asynchronous messaging, and the problem of
making theoretical ideas such as “fail stop” into an equivalent real-
ity. We must never forget that any change to a distributed algorithm
or its environment or implementation, no matter how small or in-
nocent the change may appear, may in fact invalidate the algorithm
. . . and it may be weeks, months, or even years before we notice the
error.

15. Availability

In July 2010, Gemini released the Hibari source code under the
Apache Public License version 2.0. Its source code and documen-
tation, including Systems Administrator’s Guide and Developer’s
Guide, is available at http://hibari.sourceforge.net/.

Acknowledgments

Many thanks to Gemini Mobile Technologies, Inc.: to the Shibuya
development team for code and documentation reviews and to the
Shibuya field engineer team for their invaluable customer support.
I also owe thanks (and probably quite a few drinks) to the ACM’s
reviewers and to Olaf Hall-Holt, Satoshi Kinoshita, James Lar-
son, Romain Lenglet, Jay Nelson, Joseph Wayne Norton, Gary
Ogasawara, Mark Raugas, Justin Sheehy, Ville Tuulos, and Jor-
dan Wilberding. Finally, thank you to Louise Lystig Fritchie for
her unstinting patience and editing wizardry. All remaining errors
are mine.

References

[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter fault tol-
erance. In The Eighth Workshop on Hot Topics in Operating Systems

(HotOS VIII), pages 33–38, 2001.

[2] T. Arts, K. Claessen, J. Hughes, and H. Svensson. Testing implemen-
tations of formally verified algorithms. In Software Engineering Re-

search and Practice, 2005.

[3] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of
a fault-tolerant leader election protocol in erlang. In Lecture Notes in

Computer Science, pages 140–154. Springer, 2005.

[4] Cassandra Wiki. URL http://wiki.apache.org/cassandra/-
Operations. Accessed on 31 July 2010.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In PODC ’07: Proceedings of the twenty-

sixth annual ACM symposium on Principles of distributed computing,
pages 398–407, New York, NY, 2007.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of SOSP,
pages 205–220, 2007.



[7] Dynomite key-value store. URL http://github.com/-
cliffmoon/dynomite. Accessed on 31 July 2010.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on operat-

ing systems principles, pages 29–43, New York, NY, 2003.

[9] Hibari. URL http://hibari.sourceforge.net/. Accessed on
31 July 2010.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. P.
Abstract. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In In Proc.

29th ACM Symposium on Theory of Computing (STOC), pages 654–
663, 1997.

[11] I. Keidar and L. Zhou. Building reliable large-scale distributed sys-
tems: When theory meets practice. ACM SIGACT News, 40(3),
September 2009.

[12] L. Lamport and K. Marzullo. The part-time parliament. ACM Trans-

actions on Computer Systems, 16:133–169, 1998.

[13] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[14] Memcached. URL http://memcached.org/. Accessed on 31 July
2010.

[15] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable web server. In Annual Technical Conference. USENIX, 1999.

[16] R. D. Prisco and B. Lampson. Revisiting the paxos algorithm. In
Proceedings of the 11th International Workshop on Distributed Algo-

rithms (WDAG 97), volume 1320 of Lecture Notes in Computer Sci-

ence, pages 111–125. Springer-Verlag, 1997.

[17] Quviq AB. QuickCheck property-based software testing tool. URL
http://www.quviq.com/. Accessed on 01 August 2010.

[18] Riak key-value store. URL http://wiki.basho.com/display/-
RIAK/Riak. Accessed on 31 July 2010.

[19] Squid. Squid http proxy. URL http://www.squid-cache.org/.
Accessed on 31 July 2010.

[20] Sun Microsystems. Sun announces mysql cluster 7.0 for
real-time, mission-critical database applications. URL
http://www.mysql.com/news-and-events/generate-
article.php?id=2009 06. Accessed on 01 August 2010.

[21] H. Svensson and L.-A. Fredlund. Programming distributed erlang
applications: Pitfalls and recipes. In ACM Erlang Workshop. ACM
Press, 2007.

[22] J. Terrace and M. J. Freedman. Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads. In USENIX

Annual Technical Conference, San Diego, CA, 2009.

[23] Tokyo Tyrant. URL http://1978th.net/tokyotyrant/. Ac-
cessed on 31 July 2010.

[24] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In USENIX OSDI, 2004.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH:
Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing

(SC ’06). ACM, 2006.

[26] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In SOSP ’01: Proceedings of

the eighteenth ACM symposium on operating systems principles, pages
230–243, New York, NY, 2001.


