
Coordinating Distributed System Configuration Changes
with Humming Consensus

Scott Lystig Fritchie
Basho Japan

<scott@basho.com>

1. INTRODUCTION
Most of the database products developed by Basho Tech-

nologies are eventually consistent systems, such as Riak KV
and Riak Time Series [4]. If Basho were to apply its ex-
pertise and experience in eventual consistency systems to a
new file store product, then how would such a system be
managed?
Configuration management of most distributed systems

today is based upon strong consistency, using services such
as ZooKeeper [11], etcd [6], OpenReplica [17], and Chubby
[5]. These fault tolerant systems are built on strongly con-
sistent protocols (e.g., ZAB [15], Raft [14], and Paxos [13]).
These systems aren’t useful in our case: an eventual consis-
tency system that is managed by a strong consistency system
is constrained by the availability of its manager. We want a
manager that can operate correctly in failure scenarios that
would paralyze a strongly consistent system. Riak Core [12]
manages Riak KV’s eventual consistency but has constraints
that do not fit our use case.
Humming Consensus is a new algorithm for managing

configuration metadata changes in eventual consistency sys-
tems. Service is available even when only a single participant
is isolated by network partition; when the network recovers,
it is re-integrated safely with its peers. Humming Consen-
sus can also manage strong consistency systems with only
modest adaptation. Though further research is required, the
unification across consistency modes appears novel.
Humming Consensus is implemented in Machi [3], a dual

consistency mode, distributed blob/file store based on Chain
Replication [18]. The algorithm safely manages Machi’s
administrator-directed static membership, runtime replica
group membership, strict chain ordering within the replica
group, and anti-entropy file re-replication activities.

2. INSIGHT IN HINDSIGHT: DON’T
RECORD FINAL CONSENSUS RESULT

Consensus protocols such as Paxos and Raft use their
participants’ persistent storage to remember the result of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21 2016, London, United Kingdom
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911165

a change in the system’s state. For example, a Paxos sys-
tem might record that the result of ballot #2 is that tax on
wine has been abolished. The proposal inside each ballot
specifies the protocol’s final decision.

Humming Consensus uses its participants’ persistent stor-
age only to signal intention to change configuration. Each
participant is free to agree with the intention, ignore it,
or to make an alternative suggestion. Each participant’s
agree/disagree decision uses the same code and assumes no
Byzantine-style misbehavior.

Humming Consensus uses write-once registers to store
change intentions. When a participant reads the configu-
ration suggestion stored at logical time epoch E, the par-
ticipant makes a decision (independent of its peers) either
to use E’s configuration or to reject it. If rejected, then
the participant might continue to use its prior configura-
tion while either doing nothing or suggesting an alternative
new configuration. However, any new configuration sugges-
tion must be written using a later epoch number, i.e., E + i
where i > 0.

3. BASIC COMPONENTS OF HUMMING
CONSENSUS

Humming Consensus is embedded into the distributed sys-
tem whose configuration the algorithm manages. Unless oth-
erwise noted, the word “system” here refers to the managed
system and not to Humming Consensus.

1. The system-specific configuration, whatever that is.
For example, a list of replicas of a key-value store or a
flat ASCII file.

2. The epoch number, a strictly increasing integer that
represents logical time. The epoch number is incre-
mented every time that any participant believes that
the system’s configuration may have changed.

3. The write-once epoch register store. This store is a
simple client/server service, inspired by CORFU [1],
that runs collocated with each participant that needs
to modify the system’s configuration. The API is shown
in Figure 1. It is keyed by the epoch number; its value
is an opaque system-specific configuration (bullet #1).
All participants must be able to read and write all
other participants’ epoch register stores.

4. A transition safety function, used to judge the safety
of changing configuration from Cold to Cnew.

-type Epoch = non_neg_integer().

-type Config = opaque().

-type ReadError = not-written | partition.

put(Epoch,Config) -> ok | is-written | partition.

get(Epoch) -> {ok,Config} | ReadError.

get_latest() -> {ok,Epoch,Config} | ReadError.

Figure 1: Write-once epoch register store API.

4. ENVIRONMENTAL ASSUMPTIONS
Humming Consensus assumes a failure model of fail recov-

ery: a process may fail and recover a finite number of times.
A process may reuse its identity/name after a failure.
Message corruption by the network can be tolerated for

finite periods of time, though frequent corruption can deny
the system liveness. Omission failures (i.e., message drops)
are permitted, though they can cause false positive failure
decisions by failure detectors and affect liveness. Message
delivery reordering is permitted. Late-arriving replies are
discarded (e.g., after a request timeout timer has expired).
Arbitrary Byzantine behavior is not permitted. Some

types of Byzantine behavior may be detected and circum-
vented (e.g., by verifying checksums of the epoch register
store’s configurations). Other kinds of Byzantine failure can-
not be tolerated, such as an infinitely-fast jerk who always
writes an infinite number of invalid configurations to the
epoch register store.
A safety property that Humming Consensus will even-

tually choose a safe transition from old → new configura-
tions depends on no Byzantine behavior, a bug-free transi-
tion safety function (see Section 3), and mitigation for the
“flapping”condition described in Section 6.1. Liveness is not
guaranteed by Humming Consensus: an infinitely fast jerk
can make liveness impossible.
Accurate failure detection is not required. False positive

failure decisions can cause additional churn by the algo-
rithm and thus can hurt liveness, but false positives do not
cause safety violations if they occur only for a limited period
of time. See Section 6.2 for how Machi’s failure detection
strategies have evolved.
Configurations stored in the epoch register store must be

durable despite arbitrary process crashes and restarts. Par-
ticipants can detect durable storage amnesia by maintaining
a separate persistent store in a separate failure domain that
stores the latest epoch number seen by Humming Consensus.
Humming Consensus does not require any communica-

tion between participants directly. All message passing is
indirect, via reads and writes to the epoch register store
collocated with each participant.

5. ALGORITHM OVERVIEW
Pseudo-code for an iteration of the Humming Consensus

algorithm appears in Figure 2. The figure contains a sim-
plification of the executable code in Machi’s Humming Con-
sensus implementation, the only one available today. Due to
entanglement with Machi’s implementation of Chain Repli-
cation and CR’s state transition safety invariants, it remains
future work to create a Humming Consensus implementation
separate both from Machi and from Chain Replication. This
author maintains a GitHub repository at [10] for errata for
this paper and source code for future work.

var C_cur, C_max, C_new,

C_repair, C_x : configuration,

C_all_latest : set(configuration |

unwritten),

E_cur, E_max : positive_integer,

P_perm, P_partition, P_all,

P_rep, P_repair : set(participant names),

Flapping_History,

Flapping_History’ : failure detector plus

flapping detector state

iterate_once() {

{C_all_latest, P_partition} <-

get_latest_projections(P_all)

C_max <- C_x where

C_x <- member_of(C_all_latest) &&

E_max <- epoch(C_x) &&

E_max == max(epoch(C_all_latest))

{C_new, Flapping_History’} <-

make_new_config(C_cur, C_max,

Flapping_History,

P_partition)

Flapping_History <- Flapping_History’

if unwritten_exists(E_max, C_all_latest) {

C_repair <- element(C_all_latest) where

epoch(C_repair) == E_max

P_rep <- participants(C_repair)

P_repair <- union(P_perm, P_rep)

_ <- store(P_repair, E_max, C_repair)

} else if unanimous(C_all_latest) &&

E_max > E_cur &&

is_safe_transition(C_cur, C_max) {

C_cur <- C_max

E_cur <- E_max

P_all = union(P_perm, participants(C_max))

} else {

_ <- store(union(P_perm, participants(C_new)),

E_max + 1, C_new)

}

}

Figure 2: Pseudo-code for a single iteration of Hum-
ming Consensus.

Additional detail on Humming Consensus can be found
in a conference presentation [9], design white paper [8], and
Machi’s source code at GitHub [3].

We start with Ccur, the current configuration in use dur-
ing epoch Ecur by this participant. Section 2 describes the
epoch register store, which represents intent by a partici-
pant to change system configuration. If a participant writes
a configuration Cmax to the register store at a later epoch,
Emax where Emax = Ecur + i, i > 0, then each participant
makes an independent choice of what to do with Cmax.

• Option 1: Some values at the latest epoch are un-
written; “read repair” is required. Choose one of the
values found at the latest epoch and write it to all valid
participants. All store errors are ignored. If a store’s
value is already written, then it cannot be altered. If
a store fails due to server or network failure, then we
will detect the problem during a later iteration.

• Option 2: Accept the new configuration: the transi-

tion from Ccur to Cmax is valid and safe, so we adopt
the new configuration. In the common case, all other
participants will make the same judgment and also
adopt Cmax.

• Option 3: Reject the configuration: the transition
to the new configuration is not safe, or perhaps it’s
a bad idea. Machi determines “bad idea” with a nu-
meric ranking of each configuration. For example, long
chains with more members rank higher than short chains
with fewer members. To adopt a configuration with
lower rank, there must be a good reason, such as the
chain is shorter (i.e., the dynamic replica group is smaller)
because a participant is believed to have crashed. In
this case, we attempt to write newly-calculated config-
uration to the epoch register stores at epoch Emax+1.
Write failures don’t matter: they will be detected by
a later Humming Consensus iteration.

If a new configuration is rejected, then no action is re-
quired. For the sake of liveness, however, a better alterna-
tive ought to be written to a later epoch.
Read operations always query an epoch E at all register

store replicas. If there had been a race to write different
configurations for epoch E, then the dissent will be obvious
to any reader. If dissent is discovered by a read at E, then
that epoch is ignored.
The epoch register store API’s get_latest() function

fetches the latest configuration from a single store. The
client calculates an observed maximum epoch Emax from
all stores. The client ignores any configuration written to
an earlier epoch Emax − i where i > 0.
In an asymmetric network partition, a participant on the

minority side can write a configuration Cpart to epoch Epart

that may be visible to some of the majority side partici-
pants. In turn, any majority side participant can perform
read repair to create replicas of Cpart that the minority au-
thor could not write directly. Subsequently, any participant
on the majority side may read a sufficient number of copies
of Cpart to be forced to consider adopting or ignoring Cpart.
In this situation, the “bad idea” evaluation in Machi’s rank-
ing function is a good idea because the majority participants
should reject Cpart.
When in eventual consistency mode, the minimum num-

ber of writes and reads for a configuration is relaxed. Even
in a worst-case network partition when all participants are
isolated from all others, Humming Consensus groups of one
are feasible. When this happens, there is nothing stopping
multiple isolated groups from using the same epoch number
like Ex. There is no conflict as long as the network remains
partitioned: the conflict is invisible. When the partition is
healed, future reads will discover different configuration val-
ues at Ex. Humming Consensus treats such discovery as
simply a case of dissent within a single epoch. The par-
ticipants are now aware that the network environment has
changed. Any participant may suggest a new configuration
at a later epoch to trigger the change needed to adapt to
the new environment.

6. EXPERIENCE WITH HUMMING
CONSENSUS

Humming Consensus is used today by Machi, a distributed
blob/file store. A proof of safety is not yet available. How-

ever, property-based tests have confirmed its safety so far,
running in hundreds of CPU hours inside of a simulator ca-
pable of true uni-directional network partitions. When run
in eventual consistency mode, even a single isolated partic-
ipant can create a chain of length one. After network par-
titions are healed, the algorithm safely coordinates merging
the isolated chains (and the files they store) back into a sin-
gle chain.

6.1 Flapping
The biggest problem observed with Humming Consensus

is “flapping”, a liveness problem where two (or more) par-
ticipants have configuration transitions that are judged safe
by themselves but are judged unsafe by another. It is like
bickering children: I’m right, you’re wrong, and nobody ever
compromises.

Flapping is easy to detect: each participant suggests the
same configuration many times in a row, and no new configu-
ration is unanimously judged safe to transition to. Flapping
is more likely to happen in eventual consistency mode af-
ter a network partition has been healed. One sub-chain’s
safe transitions during the partition may appear unsafe to
another, formerly-isolated sub-chain.

One effective solution to flapping adopts a lower-than-
ideally ranked configuration that all agree is a safe transi-
tion. The current implementation uses a simple but effective
strategy: fall back to the safest and shortest possible chain.
In eventual consistency mode, this is a single member chain.
In strong consistency mode, this is the empty chain; crash
recovery logic is re-used to discover the latest quorum ma-
jority’s last agreed-upon chain configuration.

6.2 Failure detection as participant fitness
Initially, Machi used a very simple failure detector: one re-

quest/response failure (including timeout) to an epoch reg-
ister store was considered a failure. Failure state was not
maintained between algorithm iterations. In a symmetric
network partition where all participants witness the same
message dropping behavior, this simple strategy works well.
In an asymmetric network partition, the simple strategy
triggers excessive flapping (Section 6.1).

Machi uses Chain Replication to manage its file replicas.
Chain Replication defines a single path for data mutation
messages to travel. If that pathway is disrupted by an asym-
metric network partition, then it is worth determining where
exactly the network is failing. The SWIM protocol [7] uses
multiple paths to try to detect asymmetric network parti-
tions, but SWIM does not preserve information about where
it discovers network problems.

Machi includes a small fitness service that uses a naive
send-all-updates-to-everyone gossip protocol to disseminate
suspected network partition information. The service uses
the Riak-DT [2] library’s CRDT map of last-writer-wins reg-
ister values, keyed by participant name. Only participant X
is permitted to update the map’s key X.

For example, assume a set of three participants {A,B,C}
where an asymmetric partition drops messages only in the
direction of A → B. An iteration of Humming Consensus
running on A will report a request/response problem when
attempting to read and write from B’s epoch register store.
A will report the problem to its local fitness service, and
the result is naively spammed to everyone. Also, B sees
a problem with A and creates a similar report. All par-

ticipants have full connectivity to C, so all will eventually
have a CRDT that converges to information that A had a
problem with B, B had a problem with A, and C has no
communication problems. The same digraph is constructed
independently by each participant with the problem report
information, and the chain is re-ordered by later iterations
of Humming Consensus to route around network problem.

6.3 Changes for Strong Consistency Mode
Humming Consensus can also be used to manage strongly

consistent systems. Only two modest changes are required.
First, the minimum number of successful configuration

reads of all participants’ register stores is raised to a quo-
rum majority. If the network is suffering a partition (i.e.,
dropped messages for any reason, including participant stall
or crash), then a participant in a minority partition can-
not (by definition) read from a quorum majority of register
stores. Participants that are trapped in minority partitions
must wait until the network partition is healed.
Second, the API of the epoch register store is modified to

accommodate two register stores: public and private. The
store’s key then becomes a 2-tuple of the store type and
epoch number. The public register store plays the role as
described in Section 5. The private register store is writable
only by the local participant but readable by everyone. The
private register store is written only when a participant has
decided make a configuration state change: it copies the
configuration at epoch E from the public register store to
its private register store.
The private epoch register store is read by Humming Con-

sensus to discover the latest epoch number Elast where all
participants had agreed to adopt the configuration in the
public store at Elast. Flapping can occur any time that fail-
ure detectors disagree on failed participants, so there can be
many configurations in the public epoch register store with-
out unanimous agreement that any one of them is safe and
usable. Therefore the private epoch register store will be
more sparsely populated than the public store.

7. CONCLUSION
Humming Consensus is a technique that manages the con-

figuration metadata of Machi, a distributed blob/file store.
All participant communication is indirect, via a simple write-
once register service (i.e., the epoch register store). Items in
the epoch register store signal intent to make a configuration
change. The decision to proceed with a configuration tran-
sition is made independently by each participant, guided by
currently available data in the epoch register stores. Hum-
ming Consensus manages Machi in both of its operating
modes: eventually consistent mode and strongly consistent
mode. Future work will focus on separating the technique
from its sole implementation (embedded in Machi) and de-
veloping a formal safety proof.

8. ACKNOWLEDGMENTS
My thanks to everyone who helped improve this paper

with their critique: the PaPoC review committee, Mark
Allen, Russell Brown, Louise Lystig Fritchie, Susan Lee,
Heather McKelvey, Jon Meredith, Bill Soudan, Steve Vi-
noski, and Matthew Von-Maszewski. “Humming Consensus”
was inspired by the IETF’s practice of vocal humming as an
informal substitute for voting, as described in [16].

9. REFERENCES
[1] M. Balakrishnan, D. Malkhi, V. Prabhakaran,

T. Wobbler, M. Wei, and J. D. Davis. CORFU: A
shared log design for flash clusters. In USENIX NSDI
’12), pages 1–14, 2012.

[2] Basho Technologies, Inc. Convergent replicated
datatypes (CRDTs) in Erlang. Source code repository
at https://github.com/basho/riak_dt.

[3] Basho Technologies, Inc. Machi: A robust and reliable
distributed blob store. Source code repository at
https://github.com/basho/machi.

[4] Basho Technologies, Inc. Riak: A distributed,
decentralized key-value store. Source code repository
at https://github.com/basho/riak.

[5] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation, pages 335–350. USENIX Association,
2006.

[6] CoreOS, Inc. etcd: A highly-available key value store
for shared configuration and service discovery. Source
code repository at https://github.com/coreos/etcd.

[7] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable
weakly-consistent infection-style process group
membership protocol. In Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International
Conference on, pages 303–312. IEEE, 2002.

[8] S. L. Fritchie. Machi chain replication: Management
theory and design. https://github.com/basho/-
machi/tree/master/doc/high-level-chain-mgr.pdf.

[9] S. L. Fritchie. Managing chain replication with
Humming Consensus. Presentation at RICON San
Francisco 2015, http://ricon.io/speakers/-
slides/Scott_Fritchie_Ricon_2015.pdf.

[10] S. L. Fritchie. Papoc paper errata and future
development. Repository at https://github.com/-
slfritchie/humming-consensus.

[11] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX Annual Technical Conference,
volume 8, page 9, 2010.

[12] R. Klophaus. Riak core: Building distributed
applications without shared state. In ACM SIGPLAN
Commercial Users of Functional Programming,
page 14. ACM, 2010.

[13] L. Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[14] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14),
pages 305–319, 2014.

[15] B. Reed and F. P. Junqueira. A simple totally ordered
broadcast protocol. In Proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and
Middleware, page 2. ACM, 2008.

[16] P. Resnick. IETF RFC 7282: On consensus and
humming in the IETF. 2014.

[17] E. G. Sirer and D. Altınbüken. Commodifying
replicated state machines with OpenReplica. 2012.

[18] R. Van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In
OSDI, volume 4, pages 91–104, 2004.

