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ABSTRACT
The viability of implementing an in-memory database, Er-
lang ETS, using a relatively-new data structure, called a
Judy array, was studied by comparing the performance of
ETS tables based on four data structures: AVL balanced
binary trees, B-trees, resizable linear hash tables, and Judy
arrays. The benchmarks used workloads of sequentially- and
randomly-ordered keys at table populations from 700 keys
to 54 million keys.

Benchmark results show that ETS table insertion, lookup,
and update operations on Judy-based tables are significantly
faster than all other table types for tables that exceed CPU
data cache size (70,000 keys or more). The relative speed
of Judy-based tables improves as table populations grow to
54 million keys and memory usage approaches 3GB. Term
deletion and table traversal operations by Judy-based tables
are slower than the linear hash table-based type, but the
additional cost of the deletion operation is smaller than the
combined savings of the other operations.

Resizing a hash table to 232 buckets, managed by a Judy ar-
ray, creates the most consistent performance improvements
and uses only about 6% more memory than a regular hash
table. Other applications could benefit substantially by this
application of Judy arrays.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Data Types and Structures ; E.1 [Data]: Data
Structures—Trees; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Performance evaluation
(efficiency and effectiveness)

General Terms
AVL tree, B-tree, Erlang, hash table, in-memory database,
Judy array
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1. INTRODUCTION
The Erlang Open Telecom Platform (Erlang/OTP) has an
efficient in-memory database known as ETS tables (Erlang
term storage) for storing and retrieving Erlang data terms.
As RAM prices continue to fall and as the gap between
CPU instruction execution latency and RAM access latency
widens, it becomes increasingly worthwhile to examine the
performance of large ETS tables populated with millions of
terms. This research compares the efficiency of the current
ETS table implementations with several new implementa-
tions: one based on an in-memory B-tree and three based
on a relatively new data structure called a Judy array [3].

The Judy array turns out to be an excellent data struc-
ture for building in-memory datastores that exceed CPU
cache size. A performance analysis of seven small bench-
mark programs shows that an ETS table implemented with
a Judy array usually runs faster than tables implemented
with a resizable linear hash table and much faster than ta-
bles implemented with AVL trees or B-trees. In cases where
Judy-based tables are slower, the combined speed advantage
of the faster operations outweighs the penalty of the slower
ones.

The primary audience for this research is Erlang develop-
ers, most of whom use ETS tables in their applications di-
rectly or indirectly via Mnesia [11], an important distributed
database application written in Erlang. ETS tables are the
bedrock on which Mnesia is built.

A secondary audience is the much larger community of C
and C++ developers. Many algorithms that they use daily
rely on hash tables for in-memory datastores of one kind
or another. Most of those developers assume that their only
options for optimizing the datastore portion of their applica-
tions are either (a) to tune the hash function or (b) to adjust
the size of the hash table. This paper proposes another op-
tion: (c) to use a Judy array to create a really big hash
table, 232 hash buckets, to reduce the time spent searching
and managing collision lists.

This paper is structured as follows. Newcomers to Erlang
are given a brief introduction to Erlang in Section 2 to aid
them in understanding some of the Erlang jargon and syn-
tax that Erlang programmers take for granted. Section 3
presents a summary of existing ETS table types and their
implementations. Then the focus of attention shifts to a
new data structure, the Judy array. Section 4 introduces



-module(test).

-export([square/1]).

% This is a comment.

square(X) -> mult(X, X).

mult(X, Y) -> X * Y.

Figure 1: A simple Erlang source module

the reader to the Judy array and what it looks like from a
user’s point of view. Section 5 describes how Judy arrays are
used to implement three new ETS table types. The bench-
mark programs using all of the ETS table types are discussed
next. Section 6 explains several of the design decisions made
while creating the benchmark programs. Section 7 analyzes
the results of seven ETS benchmark programs. Section 8
presents a small survey of related work. The paper ends
with Section 9 naming areas for future research and Sec-
tion 10 presenting the conclusion.

2. ERLANG INTRODUCTION
This section provides a minimal Erlang primer so that Er-
lang neophytes can understand the syntax used in the later
sections of this paper. For greater detail, see the original
reference book on the Erlang language [1].

2.1 Erlang data types
Erlang terms can be divided into two general categories,
simple and complex. Three simple term types are used in
this paper:

• Numbers Numbers may be integers or floating point
numbers. Integers may grow beyond native CPU word
length to any size (i.e., “bignum” support). Syntax
examples: -4, 6.02e23, 3141592653589.

• Atoms As in LISP, atoms are constants with human-
friendly names. Erlang atoms must begin with a lower-
case letter or must be enclosed in single quotes. Syntax
examples: atom1, ’ATOM2’, ’$foo’.

• Binaries The binary data type represents a sequence
of bytes stored contiguously within the Erlang virtual
machine. Syntax examples: <<115,99,111,116,116>>,
<<"scott">>. The latter is syntactic sugar for the for-
mer; both specify the ASCII character codes for the
string “scott”.

The two complex term types used in this paper are lists and
tuples. An Erlang list, like a LISP list, may be of arbitrary
length, and its elements may be any data type, including
other lists or tuples. Erlang tuples are similar to lists but
are fixed length. A tuple’s constant length allows O(1) ac-
cess to any element within the tuple. Example syntax of
a three-element list and a tuple are [1,2,3] and {1,2,3},
respectively. The syntax "scott" is syntactic sugar for a list
containing the ASCII character codes for the string “scott”
(i.e., [115,99,111,116,116]).

2.2 Erlang syntax and virtual machine
Figure 1 contains the code for an Erlang source “module”
called test. The notation F/N denotes a function F that has
N arguments, for example, square/1. Within a module,
functions may be called by their simple name, for example,
mult(X, X). Outside of a module, however, only functions
named in the -export attribute’s list are callable. Further-
more, they must be called by a fully-qualified name using
the syntax module:func(A), where A represents zero or
more arguments, for example, test:square(5). Specifying
the module name erlang is optional when calling an Erlang
built-in function (BIF), for example, date().

Erlang programs may be compiled into abstract byte code or
native executable code. Both types of code are executed by
a host operating system process that implements the Erlang
virtual machine. Like the Java virtual machine, the Erlang
virtual machine provides services such as consistent access to
host operating system resources, memory management and
garbage collection services, and exception handling facilities.

3. ETS TABLES
ETS is an acronym for Erlang Term Storage. ETS permits
Erlang programs to store large amounts of data in mem-
ory with O(logN) or O(1) access time for tables with sorted
and unsorted keys, respectively. This section presents an
overview of what ETS tables are, then briefly explains the
behavior and underlying data structures of existing ETS ta-
ble types as well as the new ETS table types developed for
comparison purposes.

3.1 ETS table overview
Conceptually, an ETS table is a key-value database. In
many ways, an ETS table is analogous to associative ar-
rays found in many other languages, such as Perl’s hash and
Python’s dictionary types. Familiar operations such as key
insertion, query, and deletion are supported. Table traver-
sal operations such as “get first item” and “get next item”
are also available. However, ETS tables also support addi-
tional features such as pattern-matching queries, for exam-
ple, match all tuples where the first element is an integer
less than 5 and the third element is the atom louise.

Unlike many other databases, ETS imposes only two con-
straints on the types of data that it stores:

1. All terms stored in an ETS table must be tuples.

2. A term’s key position is defined at table creation time.
The default is the first element, but the key may be
configured to be any element within the tuple.

These two rules allow the programmer a great deal of flex-
ibility. Any Erlang term, be it a simple number or a very
large list or a deeply-nested tuple, may be used as the key
for an ETS-stored tuple. Furthermore, there are no restric-
tions on how many elements the tuple may have (without
violating rule #2) or on the data type of each tuple element.

The type of an ETS table is defined when the table is in-
stantiated. The virtual machine may have over a thousand



active ETS tables of different types at one time, and the
compile-time limit may be overridden by an environment
variable when the virtual machine is started.

For performance reasons, ETS is primarily implemented as
BIFs inside the Erlang virtual machine. All BIFs and their
supporting functions, together with the rest of the virtual
machine, are written in C.

3.2 Ordered ETS tables
The current release of Erlang, version R9B, provides one
type of ordered ETS table: the ordered set type. The se-
mantics of an ordered set ETS table require that traversal
of the table using functions such as “get first key” and “get
next key” must return keys in sorted order. Only one tuple
with any key K may be stored in the table at any time. If a
tuple with key K is inserted into an ordered set table, and
a tuple with that key is already present in the table, the old
tuple will be replaced by the new tuple.

The sorting order of an ordered set table’s keys is main-
tained by a standard AVL balanced binary tree. The AVL
tree data structure dictates that operations on the tree take
O(logN) time to complete, where N is the number of tuples
stored in the table.

Because an ETS table key may be an arbitrary Erlang term,
a sorting order is defined in order to compare terms of differ-
ent types. For example, the value of 42 >= "mark" is false.
The sorting order is as follows: numbers < atoms < tuples <
the empty list [ ] < non-empty lists < binaries. This rule
is applied recursively to the elements of lists and tuples in
order to break a tie.

3.3 Unordered ETS tables
Erlang provides three types of unordered ETS tables: set,
bag, and duplicate bag. A table of type set, like the
ordered set type, may store only a single tuple using any
key K. A bag type table may store multiple tuples us-
ing K, but the value of each tuple must be different. A
duplicate bag type table may use K to store multiple copies
of the exact same tuple.

The unordered ETS table types are implemented using a
linear hash bucket array. The hash function folds all of the
parts of the key term into an unsigned long integer. The
hash bucket array is automatically resized as hash bucket
populations rise above or fall below a compile-time constant,
CHAIN LEN. The default value of CHAIN LEN is six items.

3.4 New ETS table types
To supplement the built-in ETS table types, the author
added four new table types to the Erlang virtual machine.
The first type is the btree type. The btree ETS table type
is implemented using an in-memory B-tree structure.

A B-tree is a 2M -ary tree where all paths from the root
node to a leaf node are the same length. In addition, a B-
tree limits the number of items stored in any node (except
the root) to be between M and 2M items. The performance
results in Section 7 demonstrate B-tree run-time behavior
with M = 4.

B-trees share three characteristics with AVL trees. First,
key sorting order is preserved by both tree types. Second,
insertion and deletion operations may affect multiple nodes
as the tree is rebalanced. Third, operations on the tree take
O(logN) time to complete.

The other research ETS table types are based on Judy ar-
rays: the judysl, judyesl, and judyeh types. Their imple-
mentation is discussed in detail in Section 5.

4. THE JUDY ARRAY
The Judy array1 was invented by Doug Baskins while work-
ing at Hewlett-Packard. This data structure is relatively
new and has not been mentioned in any publications that
Baskins or this author is aware of. The Judy array source
code has been released to the Open Source community under
the GNU Lesser General Public License and is available at
this time at [3]. Documents describing the implementation
of Judy arrays can be found online at [2] and [13].

The Judy array’s inventor claims that it can operate well
on big- and little-endian CPUs, 64-bit and 32-bit CPUs,
with small or exceptionally large data populations, and with
sparse or dense populations without external tuning param-
eters in a memory-efficient manner that, in most cases, is as
fast or faster than traditional hashing techniques and much
faster than tree-based algorithms. Fortunately, Judy array
source code is available with an Open Source license [5] for
independent testing.

4.1 Judy1 and JudyL arrays
From an application programming interface point of view,
a Judy array is simply a dynamically-sized array. The two
principal varieties of Judy arrays, called Judy1 and JudyL,
use a processor-dependent word, 32 bits or 64 bits, as the
array index. (To simplify descriptions, this paper will as-
sume that the size of a C unsigned long integer is 32 bits.)
Each value stored in a Judy1 array is a single bit. Each
value stored in a JudyL array is a word. The sorting order
of indices in the array is preserved.

Basic Judy array operations include the following: insert
index I into the array, delete index I, find index I, find
the first/last index in the array, and find the previous/next
index in the array that precedes/follows index I. Other
operations include finding the previous/next unused index
preceding/following index I, counting the indices stored in
the array between index I and I ′, and finding the N th index
stored in the array.

Judy arrays do not require explicit initialization. There are
no tuning parameters: there is no need to specify how many
indices will eventually be stored in the array, what the in-
dex range will eventually be, or if the index population will
be dense or sparse. There is no need to specify a custom
hashing function or index comparison function. Judy arrays
use aggressive compression techniques to try to minimize
memory consumption.

From an implementation point of view, Judy arrays are tries
(also called digital search trees). A trie is a search tree

1The array is named after the inventor’s sister.



ASK

A AIR AISLE

ASKED ASKING

Root Node*ABC . . . Z

*ABCDEFGHIJKLMNOPQRSTUVWXYZ

*ABC . . . QRST . . . Z *ABC . . . JKL . . . Z

*ABCDEFGHIJ . . . Z

Figure 2: A trie containing six English words

where portions of the index key are stored in different nodes
throughout the tree. As the search tree is traversed from
root to leaf, the index key is reconstructed from data in
each visited node. See Figure 2 for a diagram of a 27-ary
trie that stores six English words.

By design, tries are not height-balanced trees. Their strength
lies in predictable height for any given search key.

Tries can be very efficient time-wise: search time is depen-
dent upon the length of the search key, not upon the number
of keys stored in the trie. However, näıve trie implemen-
tations are very inefficient space-wise, except at very high
population densities. The trie in Figure 2 uses only 10 of the
135 total pointers inside the five trie nodes. The trie would
have even more nodes if it were not using a common space-
saving technique that stores unique word suffixes outside of
the trie (e.g., the letters “LE” in “AISLE”).

Judy arrays are implemented as a logical 256-ary trie: one
byte’s worth of key per level. A näıve 256-ary trie imple-
mentation would waste enormous amounts of space at all
but the highest population densities. Judy uses node com-
pression techniques that may store multiple bytes of the key
at any particular level of the trie. Judy selects the number
of key bytes at a particular level by the population density
in that portion of the sub-trie. According to [2], approxi-
mately 25 major data structures and a similar number of
minor data structures are used to implement Judy’s node
compression. This is in stark contrast to the one or oc-
casionally two data structures typically used to implement
most traditional trees.

While the Judy array attempts to save memory by using
dozens of data structures for node compression, it also at-
tempts to minimize execution time by optimizing the layout
of those data structures to avoid CPU cache line fill opera-
tions. CPU cache line fill operations can be very expensive

22 ! \0

ALL_

HEM!\0
Short−cut leaf

JudyL

JudyL

Root Node

3?\0\0
OF_T

ALL\0

Figure 3: A JudySL array containing four strings

time-wise. Main memory access time is 2–3 orders of mag-
nitude slower than CPU register access time. If all data is
in registers or fast local cache, a CPU can execute dozens to
many hundreds of instructions in the same amount of time
that it can wait for a single cache line fill operation to finish.

A Judy array with a population of 1–31 keys is stored in
a single-level trie: all keys and their values are stored in
the root node. This may seem like a counter-intuitive speed
optimization, but sequentially searching 31 keys in the root
Judy trie node incurs a lower worst-case CPU cache line fill
rate than a traditional search tree’s worst-case.

Once a Judy array’s population exceeds 31 keys, the trie
grows beyond one level. Each level of the trie may store an
additional 1–3 bytes of the key. Not all search paths through
the trie may be the same length: key population may be
dense in one part of the sub-trie and sparse in another. See
[13] for a detailed explanation of the complexity that erupts
once a Judy tree grows beyond one level.

4.2 The JudySL array
The Judy source distribution contains a third data structure
library: the JudySL array. Like a JudyL array, a JudySL’s
value is a word. However, the key for a JudySL array is a
NUL-terminated (ASCII NUL character) string. Figure 3
contains a diagram of a simple JudySL array that stores
the strings “ALL”, “ALL 22!”, “ALL 3?”, and “ALL OF -
THEM!”.

JudySL is implemented as a trie layered on top of JudyL
arrays. Each four bytes of the key string are used as the
key for a JudyL array. The value of that JudyL array is
either (a) a pointer to a JudyL array that stores the next
four bytes of the index string or (b) a pointer to a “short-cut
leaf” that stores the remaining bytes of the key in a single
contiguous buffer.

A JudySL tree inherits all of JudyL’s space-efficiency and ex-
ecution speed traits. JudySL has two other desirable traits.
First, like JudyL, it preserves the lexigraphic sorting order of
the keys that it stores. Second, it often requires less memory
to store strings in a JudySL array than required to store the
strings themselves, due to the trie’s common prefix sharing.
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Figure 4: A diagram of internal Erlang virtual machine term storage data structures

5. JUDY-IMPLEMENTED ETS TABLES
JudyL and JudySL arrays use keys that are fundamentally
different from the Erlang virtual machine’s internal repre-
sentation of term data. This section explains why the Erlang
virtual machine creates the “contiguous key problem” and
then discusses three techniques used to solve that problem.

5.1 The contiguous key problem
Most associative array implementations expect to use a sin-
gle contiguous region of memory for each key that it stores.
All three Judy array types are no different: they use sin-
gle machine words or contiguous byte strings for their keys.
Unfortunately, the Erlang virtual machine does not store
complex terms contiguously in memory.

As mentioned in Section 3.1, the key used by an ETS ta-
ble may be an arbitrary Erlang term ranging from a simple
number to a list or tuple containing several different types
of terms. For an example of the latter, see Figure 4.

Figure 4 contains a simplified diagram of the internal data
structures used to represent the Erlang term {scott,
"scott", <<"To">>, <<"scott">>} within the Erlang vir-
tual machine. A tuple’s data structure contains the number
of elements in the tuple and an array of tagged pointers to
each element term.

The first element is an atom. The second element is a list
containing five ASCII character codes. Each code is stored
in a cons cell together with a pointer to the next cons cell in
the list. An empty cons cell is appended to the end of the
list. The third and fourth elements are binaries containing
the ASCII strings To and scott, respectively. Their actual
binary data is stored in a reference-counted binary structure
that contains the eight ASCII codes for the string To:scott.

5.2 The judysl table type
Any attempt to use an Erlang term as a key for a JudySL
array must first convert the key term into a NUL-terminated
string. The judysl table implementation performs this con-
version in a three-step process:

1. The key is serialized using the same C function that
implements the BIF term to binary/1. This function
is the same one that is used to serialize an Erlang term
before writing it to disk or transmitting it across a
network.

2. The result of step #1 is run through a conversion func-
tion that replaces all ASCII NUL values with non-zero
values. The function converts every 7 bits of step #1
data into an 8-bit value where the most significant bit
is always 1. The leftover bit is prepended to the next
byte, and the loop is repeated.

3. A trailing ASCII NUL is appended to the end of the
string.

Unfortunately, the sort order of a list of Erlang terms [A,
B, . . . ] is not the same as the lexigraphic sort order of
[term to binary(A), term to binary(B), . . . ]. Therefore,
this JudySL-based technique cannot be used to implement
an ETS ordered table type.

5.3 The judyesl table type
The author created an array library called JudyESL to re-
move JudySL’s requirement of a NUL byte at the end of
the key string. JudyESL’s API is very similar to JudySL’s
API. The only difference is that JudyESL functions have an
additional function argument to pass in the length of the
key string and to return the key length (as calculated by
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Figure 5: A JudyESL array containing three strings

the traversal-related functions). The same basic trie struc-
ture, using JudyL arrays as 4-byte building blocks and us-
ing short-cut leaf nodes, is used by JudySL and JudyESL to
store the serialized form of the key term.

In order to provide end-of-string information, all leaf nodes
in a JudyESL trie are short-cut leaf structures. The short-
cut leaf node provides unambiguous information for deter-
mining the exact length of the index string. For strings 4
bytes or shorter, the short-cut leaf node may describe a trail-
ing string length that is zero or even negative. See Figure 5
for a diagram of a simple JudyESL array that stores the
strings “BE”, “BEAR”, and “BEEHIVE”.

The current JudyESL implementation does not have short-
cut leaf nodes complex enough to store the strings S and
S′ simultaneously, where S is single NUL byte and S′ is
two NUL bytes. This limitation does not affect JudyESL’s
use for judyesl type tables: the term serialization process
cannot create two strings S1 and S2 where S1 is a complete
prefix of S2.

5.4 The judyeh table type
The Judy documentation suggests replacing a traditional
hash table with a JudyL array. Such a substitution frees the
programmer from having to define the size of the hash table
statically or having to implement a hash table that shrinks
and grows as populations fluctuate. As an added benefit,
the combination of a good hash function and a JudyL “hash
table” with 232 buckets will create very few hash collisions,
even with tables populated by millions of elements. On 64-
bit machines, a good hash function can ensure that collisions
will almost never happen, even with table populations in the
billions.

Several attempts were made to implement the JudyEH li-
brary used by the judyeh ETS table type before an accept-
able solution was found. The first attempt used a data struc-
ture similar to JudySL’s short-cut leaf node. When storing
an Erlang tuple T with a key K, the JudyL hash array is
indexed by HASH(K). The hash array’s value in the no-
collision case would point to a short-cut leaf node structure
that contains a pointer to T . In the event of a collision,
the hash array’s value would point to a JudyL array that
stores the collision list. The second JudyEH implementa-
tion eliminated the short-cut leaf node structure and always
used two levels of JudyL arrays: the top-level hash array
and the bottom-level collision arrays. However, both im-
plementations had the same problem: memory bloat. The
culprit was malloc()’s overhead when allocating millions of

small (4–8 byte) short-cut leaf nodes or Judy arrays. The
third attempt managed short-cut leaf node structures with
a custom memory manager: memory overhead was close to
ideal, but the runtime performance was awful.

The best solution was to avoid solving the problem of col-
lisions at all. In the no-collision case, the JudyL hash ar-
ray’s value is the Erlang term pointer T . In the collision
case, the hash array’s value is a magic number, 0xffffffff,
which is easily-discernible from a valid Erlang term pointer.
The presence of this magic number means that an alternate
data structure must be consulted to find the real answer. In
the end, the alternate structure used is the two-level JudyL
technique from implementation number two. The run-time
speed is acceptably fast, and the additional memory and
time overhead is negligible because the incidence of colli-
sions in the top-level JudyL hash array is so rare: the colli-
sion rate is less than 0.2% for 7 million objects hashed across
232 buckets.

6. EXPERIMENT DESIGN
The benchmark programs described in Section 7 were de-
signed to emphasize, as much as possible, the runtime differ-
ences in ETS table implementations. One way to accentuate
those differences is to minimize the amount of non-ETS ac-
tivity within the Erlang virtual machine. As the results in
Section 7 show, minimizing non-ETS activity was not neces-
sary to determine if any differences between ETS table types
exist at all. This section discusses five design choices made
to limit the virtual machine’s intrusiveness and to reduce
variability in benchmark execution times.

6.1 Minimize memory copying overhead
In the current Erlang virtual machine implementation, ETS
tables have their own memory management system that is
independent from the rest of the virtual machine. When a
tuple T with key K is stored in an ETS table, a complete
copy of T is made in ETS-managed memory. As program
execution continues, the garbage collector may reclaim T
when it is no longer referenced.2 When K’s value is retrieved
from the table, a complete copy of T is made in garbage-
collected memory.

To minimize term-copying overhead, a simple one-element
tuple should be used. A one-element tuple would be suffi-
cient for six of the seven benchmark programs. However,
one benchmark program exercises the commonly-used func-
tion ets:update counter/3, which efficiently and atomi-
cally performs a table lookup, increments the value of one of
the stored tuple’s elements, and stores the new tuple back
in the table. Therefore all of the benchmarks operate on
two-element tuples: the first element is the integer key, and
the second element is the integer counter value.

6.2 Minimize the time spent comparing terms
As the Erlang virtual machine traverses the AVL tree or B-
tree of an ordered ETS table or traverses a collision list in
an unordered ETS table, it calls the C function cmp() to
compare Erlang terms. As Figure 4 shows, cmp() may have

2An analogous situation would be when T is serialized and
then written to disk: the local file system is also a datastore
that is independent of the Erlang virtual machine.



Term Bytes
1 3
123456789 6
6.02e23 33
scott 9
"scott" 9
<<"scott">> 11
{1, "scott"} 13
[1,2,[[3,4],5],[[6]]] 34
Return value of make ref() 33
Return value of self() 27

Table 1: Size (in bytes) of various terms as serialized
by term to binary/1

to examine many areas of memory to calculate its result. To
minimize each benchmark’s term comparison overhead, the
key term should be as quick to compare as possible.

Erlang atoms are the quickest to test for equality, but they
are slow to test for relative magnitude: the atom table must
be consulted to retrieve each atom’s ASCII name. Further-
more, constructing and storing several million atoms would
take a lot of time and space. Numbers are equally quick to
test for both equality and relative magnitude. As a further
efficiency measure, the virtual machine’s term pointer tag-
ging scheme can “stuff” small integers (less than 227−1) into
the object pointer itself, avoiding the overhead of allocating
a separate object to store the integer.

6.3 Minimize memory overhead from JudySL
and JudyESL arrays

The performance of judysl and judyesl table types are af-
fected to a greater degree by key choice than are the other ta-
ble types. Unlike the other table types, two complete copies
of the key term are made. One copy is inside the JudySL
or JudyESL array, and the other is stored by the ETS table
itself.

Table 1 shows the serialized sizes of several Erlang terms.
The use of complex tuples or lists, or use of larger basic
term types, can create a large serialized term string which,
in turn, creates a long key string for a JudySL or JudyESL
array. It is difficult to predict how key choice will affect how
much memory will actually be consumed by a judysl or
judyesl table or what the impact on actual execution time
will be.

6.4 Minimize arithmetic and GC overhead
Erlang’s bignum support sometimes comes at an unwanted
cost. Many pseudo-random number generators rely on fixed
integer sizes to keep a tight lid on computational cost and
space. The Erlang virtual machine will always use bignums
to preserve all of the overflow bits that fixed-size arithmetic
in C will discard.

One technique that could hide the computational cost of
bignum arithmetic is to generate a long sequence of pseudo-
random numbers before starting the stopwatch on a bench-
mark. However, that method may cause unexpected garbage
collection activity while the benchmark is running. Further-
more, the term storing the precomputed random numbers

will consume physical RAM that may prevent the creation
of a 54 million key ETS table.

The random number generation technique used by the bench-
mark programs does not precalculate values. Instead, the
generator function is given the current number in the se-
quence, Ni, and returns the next number in the sequence,
Ni+1. It uses one multiplication and one division (remain-
der) operation. Its disadvantage is that the operands are
usually bignums and thus add more overhead to the bench-
mark, but it is very cheap memory-wise.

6.5 Do not change the hash function
All of the unsorted ETS table types use the same C function,
make hash2(), to create a 32-bit unsigned long value for
each key. The judyeh table implementation could probably
run faster by recognizing simple key terms, such as small
integers, and using their value directly as the hash value.
However, the intent of the benchmarking tests is to measure
the effect of changing only the hash table implementation
itself.

7. PERFORMANCE RESULTS
This section presents the results of seven small benchmark
programs designed to demonstrate wall-clock execution time
and memory consumption properties of all ETS table types
under a variety of workloads and table populations.

Of all the standard Erlang/OTP ETS table types, the fastest
overall performer is the set type. Therefore, any new ta-
ble type should consistently match or beat the set type to
be considered a viable addition to ETS. Accordingly, most
of the graphs below are presented with execution times rel-
ative to set’s runtime (i.e., set’s runtime is always 1.0).
Smaller relative runtimes are better; runtimes below 1.0 in-
dicate performance better than set’s.

Each benchmark program was run using an assortment of
table populations in order to show how table performance
changes as the tables grow larger than CPU caches can store.
Each iteration was repeated enough times to be confident
that the measured runtimes were accurate to three signifi-
cant figures.

The discussion in this section proceeds as follows: descrip-
tion of the experiment platform, execution time results, mem-
ory consumption results, and a final analysis of all test re-
sults.

7.1 Experiment platform
The test platform was a rack-mounted dual CPU Intel Xeon
system running at 2.0GHz. The machine contained 4GB of
PC2100 (266MHz) DDR RAM with a Linux 2.4.18 kernel
from the RedHat 8.0 Linux distribution. All tests were run
within the amount of RAM available and did not trigger any
virtual memory-related disk activity. The machine was oth-
erwise idle while all tests were run. The version of Erlang
used was the Erlang/OTP R9B-1 release with Pthreads dis-
abled at compile time. It was linked with GNU libc version
2.2.93.

The Intel Xeon processor is a member of the Pentium 4
processor family. According to [7], Xeon processors have a
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Figure 6: Average benchmark runtimes for
sequential-order insertion into an empty table, rel-
ative to the set table type

16-word (64 byte) cache line size. This cache line size is a
departure from earlier IA-32 processors, which have 8-word
(32 byte) cache lines. Judy’s internal data structures were
laid out with the assumption that the cache line size is 16
words.

Each CPU has a L1 data cache of 8KB and a unified L2
cache of 512KB. An ordered set ETS table with 7,000 two-
element tuples, in the form described below, occupies ap-
proximately 205KB. The amount of memory used varies
slightly for the other data structures studied; in general,
an entire 7,000 key table fits within the CPU’s L2 cache,
but a 70,000 key table does not.

The following number of keys used for each test: 700; 7,000;
70,000; 700,000; 7 million; 14 million; 21 million; and 54
million. The Linux kernel imposed a 3GB limit on the size of
any individual process. Unfortunately, inserting 54 million
two-element tuples into a judyesl table caused the process
to try to grow above 3GB, terminating the virtual machine.
Therefore, all of the graphs are missing a 54 million key data
point for the judyesl table type.

7.2 Times for sequential & random insertion
The average runtimes of the sequential and random inser-
tion tests are shown in Figure 6 and Figure 7, respectively.
Each test starts with an empty table, then inserts the tuples
{K, 1}, where K is a value from 0 to X. In both cases, the
set table type is fastest when the entire table size is smaller
than the L2 cache size. Once the table size exceeds L2 cache
size, it is slower than all three Judy-based table types.

The AVL tree and B-tree used by the ordered set and
btree tables, respectively, preserve the Erlang key sorting
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order. Similarly, the JudySL and JudyESL arrays used by
the judysl and judyesl table types, respectively, preserves
the lexical sort order of the serialized byte string created
from the key. All four structures take advantage of excel-
lent locality of reference conditions during the sequential
insertion test. Accordingly, they are much faster than set

at 70,000 keys and beyond.

The sequential insertion test results graph in Figure 6 pro-
vides the first hint of a pattern that appears in the ordered -

set table type in several of the tests. At 7 million keys,
ordered set suddenly performs worse relative to all types
except set. The cause of this pattern is not clear. If it were
a sudden change in set’s time, then similar jumps should
appear in all of the table types. The cause does not ap-
pear to be related to AVL rebalancing activity because the
same pattern also appears in read-only operations (e.g., the
ordered set value at 7 million items in Figures 9 and 10).

The random insertion test takes away most of the locality
of reference advantage of the sequential insertion test. All
three Judy-based table types suffer slower runtimes than the
sequential insertion test, but they remain consistently faster
than the set type at 70,000 keys and beyond.

A reasonable person might argue that the insertion tests
unfairly disadvantage the set table type. In the 7 million
key case, the calls that the set table makes to the C function
grow() triggers the resizing the set table’s hash table 3,905
times. Profiling with gprof [6] shows that grow() accounts
for approximately 12% of execution time at 7 million keys.
Figure 8 shows that set’s overhead grows at a far faster pace
than the overhead of any other table type. However, even
if the hash table could avoid calling grow() by having all
required buckets available at table creation time, the judyeh
table would still perform better than set at 70,000 keys or
more.

It is worth noting that the judyeh table type performs slightly
better in the sequential insertion test than it does in the ran-
dom insertion test. The average relative sequential insertion
time at 21 million keys was 45.7%, and the average relative
random insertion time at 54 million keys was 60.5%. If the
hash function had created a truly random distribution of val-
ues, the two sets of results should be identical or nearly so.
The make hash2() function does not have a hash collision
rate much higher than the ratio of keys to hash buckets, so
hash collisions cannot explain the difference in results. How-
ever, visual inspection of the sequence of hash values from
the sequential insertion test reveals an oscillating pattern
of large and small hash values. The CPU’s data caches are
likely taking advantage of the pattern to lower the sequential
test’s runtime.

7.3 Times for sequential & random lookups
The average benchmark runtimes for the sequential-order
and random-order lookup tests are shown in Figure 9 and
Figure 10, respectively. Both tests were performed on ta-
bles first created by the sequential insertion test described
in Section 7.2; term insertion time was not measured by
the benchmarks. Both use the ets:lookup/2 function to
retrieve each stored tuple.
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Figure 9: Average benchmark runtimes for
sequential-order lookup, relative to the set table
type
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random-order lookup, relative to the set table type
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Figure 11: Average benchmark runtimes for forward
table traversal, relative to the set table type

As with the insertion tests, the lookup tests show a sharp
change in runtimes relative to set when the table population
grows from 7,000 to 70,000 keys. Recall that the 7,000 tuple
ETS table can fit entirely within L2 cache but a 70,000 tuple
ETS table cannot.

The performance of all Judy-based table types in the se-
quential lookup test is good when compared to the set table
type. The locality of reference advantage given by looking
up sequential keys results in remarkable runtimes for the
judysl and judyesl table types: 32.3% at 54 million keys
and 31.2% at 21 million keys, respectively. The same locality
of reference conditions do not appear to help the ordered -

set and btree types to nearly the same degree. The se-
quential lookup test’s access pattern appears ideally-suited
for JudySL and JudyESL arrays.

The random-order lookup test’s poor locality of reference
conditions disadvantage the ordered set and btree table
types. However, the judysl and judyesl types perform sur-
prisingly well: at their largest table size, they run at average
relative times of 86.8% and 88.3%, respectively. The fastest
random-order lookup relative time belongs to the judyeh

type: 74.7% at 54 million keys.

7.4 Times for forward traversal, counter up-
dates, & key deletion operations

All tests in this section were performed on tables first cre-
ated by the sequential insertion test described in Section 7.2;
term insertion time was not measured by the benchmarks.
Test results for the btree table type are unavailable due to
btree’s incomplete implementation at the time of writing.

The table traversal test uses the ets:first/1 function to
find the first term in the table, then repeatedly uses ets:-
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Figure 12: Average benchmark runtimes for key
deletion, relative to the set table type

next/2 to retrieve all other terms from the table. The av-
erage runtimes of the table traversal test are shown in Fig-
ure 11.

The traversal test clearly favors the ordered set table type.
Its worst average time is 77.8% at 700 keys, and its best
average time is 43.5% at 54 million keys. The Judy-based
table types should also be able to take advantage of similar
locality of reference conditions as they do in the sequential
insertion and sequential lookup tests. However, they do not
appear to do so. The judysl and judyesl types never run
in less average time than the set table type. The judyeh

table time fares even worse: 258% at 700 keys and 151% at
54 million keys.

The poor table traversal results for the Judy-based table
types are puzzling. The author does not have a ready ex-
planation. Profiling does not identify an obvious culprit.
The extra overhead may be due to the ETS table interface’s
need to traverse the underlying hash table JudyL trie at
least twice from root to leaf.

The random-order counter update test uses the ets:update -

counter/3 function to increment the value of the second
element of each tuple stored in the table. A graph depict-
ing the results of this test is not included here: the results
were identical to the random-order lookup results shown in
Figure 10. The counter update test uses the same virtual
machine C functions that the lookup test uses to find the
correct tuple, and the additional work required to store a
new tuple with the new counter value is the same for all
table types.

The term deletion test results are shown in Figure 12. The
test traverses the table to identify the keys in the table and



Table type Memory used Memory used
by 70K keys by 21M keys

btree 10.4MB 1,055MB
judyeh 10.4MB 1,036MB
judysl 10.4MB 1,033MB
judyesl 11.3MB 1,324MB
ordered set 10.7MB 1,129MB
set 10.2MB 980MB

Table 2: Memory used by various ETS table types

then to delete each of those keys with the ets:delete/2

function.

Analysis of the deletion test’s results are complicated by the
table traversal used by the test. However, it is noteworthy
that the performances of the Judy-based tables are signifi-
cantly better in the term deletion test than they are in the
table traversal test, despite the fact that both tests share
an ets:next/2-based table traversal. For example, at 21
million keys the judyeh table type’s average runtime in the
table traversal test is 155%, but it is only 106% in the term
deletion test.

7.5 Memory consumption
Any analysis of faster or slower benchmark times must also
be accompanied by an analysis of the amount of memory
used by those benchmark programs. Table 2 shows the
amount of memory used by each table type to store 21 mil-
lion tuples from the sequential insertion test described in
Section 7.2.

The amount of memory used by the judyeh, judysl, and
btree tables all fall in between the amount used by the
set and ordered set types. The judyeh and judysl tables
use only about 6% more memory than set at 21 million
keys. The most memory-hungry type, judyesl, uses 11%
and 35% more memory than set at 70 thousand and 21
million keys, respectively. The extra memory is consumed
by the additional “short-cut” leaf node structures required
by the judyesl trie and by malloc()’s overhead of managing
all of those small leaf node allocations.

7.6 Performance summary
For unsorted tables with populations of 70,000 keys or more,
performance improvement by using the judyeh table type
instead of set is easily measurable and significant. This im-
provement can be seen with keys in sequential order and
random order during operations involving table insertion,
lookup, and counter updates. The deletion operation is not
as fast as set, but deletion’s extra cost is smaller than the
benefit of insertion, lookup, and update operations com-
bined.

Furthermore, the additional RAM required by judyeh tables
is quite modest. The judyeh table type requires only about
6% more than set tables, which is smaller than the addi-
tional 15% required for the same data in an ordered set

table.

The only operation this research examines which is signif-
icantly worse for judyeh tables than set tables is table

traversal using the ets:next/2 function. Optimization of
the JudyL library itself and/or ETS-specific changes to the
JudyL library may be required. Note that a similar double-
traversal is required by ets:delete/2.

In all tests, Judy-based tables are slower than set table
populations that fit inside L2 cache. For machines with L2
cache sizes of 256KB or 512KB, the test results suggest that
Judy-based tables are not recommended for unsorted tables
with key populations under 7,000. For unsorted tables from
7,000 to 70,000 keys, the set table type is probably still the
best overall choice.

The judysl and judyesl table types have a memory con-
sumption handicap of storing the key term of each tuple
twice: once within ETS-managed memory and once within
the JudySL or JudyESL trie. Despite this handicap, both
types of tables typically perform well compared to the set

type. Both types are especially fast when the operations are
performed with keys in sequential order, much faster even
than the judyeh type.

The btree table type was included in the performance anal-
ysis primarily to provide additional data points regarding
the cost of maintaining key sort order. The btree and
ordered set random-order test results confirm that there is
a significant cost to maintain key sort order. It is notewor-
thy that the btree table does not show the same peculiar
behavior pattern around the 7 million key table size that
ordered set does.

The performances of the judysl and judyesl table types
demonstrate that the cost of maintaining key sort order can
be substantially lower than an AVL tree’s or B-tree’s cost. If
the key term type were restricted so that a serialization tech-
nique could be developed to maintain the sort order of the
original unserialized terms, a JudySL- or JudyESL-based
table type should provide superior performance to the un-
sorted set table type while still maintaining key order.

8. RELATED WORK
ETS was first mentioned in an unpublished technical report
[12] about the distributed database that became known as
Mnesia [11]. Subsequent publications about Mnesia make
indirect references to ETS tables but only mention their
linear hashing implementation.

A performance analysis [9] of the HiPE native code compiler
for Erlang states that BIF execution was the major execu-
tion time bottleneck for the AXD/SCCT benchmark. SCCT
is the time-critical portion of the code used by the Ericsson
AXD 301 ATM switch [4] that is responsible for connection
setup and teardown. A study [8] of SCCT, running on an
UltraSPARC platform and an earlier version of the Erlang
virtual machine, show that SCCT spent 32% of total CPU
cycle time executing BIFs. Approximately 64% of that time
was spent executing ETS-related code, or 18% of the total
execution time. The analysis gives little information about
the ETS table types used or ETS table populations, but
both papers demonstrate that an industrial-strength Erlang
application like SCCT might see significant performance im-
provement if a Judy-based ETS table were available.



The HiPE research group has done a lot of memory man-
agement work in the Erlang virtual machine using a “shared
heap” architecture [10]. Most or all of the copying of tuples
into and out of ETS tables could, in theory, be eliminated by
putting ETS tuples into a shared heap. For the small two-
element tuples used by the benchmark programs described
in Section 7, profiling shows that the overhead of copying
tuples into and out of ETS-managed memory is only about
1.5% of total runtime. Bigger and/or more complicated tu-
ples can raise that figure significantly.

The author is peripherally aware of efforts that make Judy
trees available to the Ruby and Perl user communities. How-
ever, those efforts appear to use each language’s foreign lan-
guage interface to make Judy arrays accessible by scripts
written in those languages; they do not (yet) attempt to
replace any of the data structures within the Perl or Ruby
interpreters themselves.

9. FUTURE WORK
The data presented in this paper shows that replacing tradi-
tional data structures with Judy arrays can provide substan-
tial performance improvement to a real-world application.
The work also prompts many ideas for further development
and research.

1. Optimize the implementations of the Judy-based ets:-

next/2 and ets:delete/2 functions. A special Judy
library tailored for ETS’s needs may make those oper-
ations consistently faster than their set type equiva-
lents. This tuning may also be necessary for good per-
formance by other ETS functions such as ets:match/2
and ets:foldl/3.

2. Extend the analysis to 64-bit CPUs. The Erlang vir-
tual machine can only address 4GB of memory, so
many additional changes need to be made to the vir-
tual machine before it will be possible to create an ETS
table larger than 4GB. Pointer sizes of 64 bits would
significantly simplify the judyeh table type’s current
collision handling scheme for cases where a poor hash
function were to create collision rates higher than one
in a billion.

3. Use CPU hardware performance counters to measure
CPU stalls while operating on large Judy- and non-
Judy-based ETS tables. Baskins suggests that the
interactions between very large in-memory datastores
and CPU TLB caches is not well-understood and re-
quires further research [personal correspondence].

4. Work with Ericsson to see if a Judy-based ETS ta-
ble type is worth including in a future Erlang/OTP
release.

10. CONCLUSION
Judy arrays are indeed an excellent data structure for build-
ing unordered ETS tables. Although Judy-based tables,
when compared to the baseline set table type, do not do
well at small table sizes (i.e., those that fit completely within
CPU secondary cache: less than about 10,000 small tuples),
they do perform well at table sizes of 70,000 keys up to 54

million keys. Specifically, the judyeh type performs signifi-
cantly faster than set for insertion, lookup, and update op-
erations: up to 54% faster with sequentially-ordered keys
and up to 39% faster with randomly-ordered keys. The
judyesl performs up to 69% faster than set at lookups with
sequentially-ordered keys.

The Judy-based tables do not perform as well as set in the
table traversal and term deletion benchmarks. However, the
cost of the term deletion operation is more than offset by the
benefit gained by the insertion, lookup, and update opera-
tion improvements. Additional work is required to improve
table traversal performance.

The performance gains of the judysl and judyeh tables are
much larger than the additional memory cost. Both types
require only about 6% more memory than set for the same
table population.

Assuming that cost of traversing a Judy-based hash table
can be lowered, the author believes that many applications,
including the Erlang virtual machine, could run faster by
replacing traditional linear hash tables with Judy arrays.
This finding is significant because optimization of such hash
tables has typically been limited to either (a) optimizing
the hash function or (b) adjusting the hash table size. The
data from this research shows that execution time can be
reduced without optimizing the hash function and by letting
the JudyL library manage the hash table size.
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