
MANAGING CHAIN
REPLICATION WITH

HUMMING CONSENSUS
Scott Lystig Fritchie, Basho Japan KK

Ricon 2015 San Francisco
2015-11-05 Thursday 5pm US PST

About Me

• Senior software engineer @ Basho Japan KK, Tokyo

• scott@basho.com, @slfritchie on Twitter

• Tech lead for Basho's distributed file store "Machi"

• Author of HibariDB (which uses chain replication)

• UNIX sysadmin & software developer since 1986

• Erlang infatuation (infection?) since 1999

Outline

• Problem statement

• What is CR?

• Why use CR?

• Managing CR is a problem?

• Why improve CR?

• An allegory of composing
music (in fan-fic style)

• Move from story to code

• Today's code status

• References, credits

• Questions!

Problem Statement

• We wish to make a self-contained manager for Chain
Replication metadata (e.g., chain membership, chain order,
safe chain state transitions) that supports both strong
consistency and eventual consistency.

• We solve this problem as distributed musicians might
compose music.

Problem Statement Problems

• What is Chain Replication?

• Why use Chain Replication?

• Why is managing Chain Replication a problem?

WHAT IS CHAIN
REPLICATION?

Chain Replication Papers
• Van Renesse and Schneider. "Chain Replication for

Supporting High Throughput and Availability." USENIX OSDI.
Vol. 4. 2004.

• Bickford & Guaspari, "Formalizing Chain Replication", tech
report, 2006.

• Bickford, "Verifying Chain Replication using Events", tech
report, 2006.

• Terrace and Freedman. "Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads."

Chain Replication Papers

• Van Renesse, Ho, and Schiper. "Byzantine chain replication."
Principles of Distributed Systems. Springer Berlin Heidelberg,
2012. 345-359.

• Abu-Libdeh, van Renesse, and Vigfusson. "Leveraging
sharding in the design of scalable replication protocols."
Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013.

Chain Replication Users

• FAWN

• CRAQ

• HibariDB

• Hyperdex

• CORFU & CorfuDB

• ChainReaction

• Synrc App Stack

• Machi

• … perhaps more? …

Chain Replication On One Slide

• Variant of primary/secondary replication: strict chain order!

• Sequential read @ tail. Linearizable read @ all.  
Dirty read @ head or middle.

C.R.: A Paxos Cousin

• "Niobe, Chain replication, and the Google File System [...]
While these protocols are seemingly unrelated, the first two
can be viewed as Vertical Paxos algorithms."

• "Vertical Paxos and Primary-Backup Replication",
Lamport, Malkhi, Zhou

The Other “One Slide”

WHY USE CHAIN
REPLICATION?

Cheap! Easy! Free! Kittens!

• “Cheap”: f+1 replicas to survive f failures.

• “Easy”: Strong consistency is a nice side-effect

• “Free": Anti-entropy is an under-valued side-effect

Cheap! Easy! Free! Kittens!

WHY IS MANAGING CHAIN
REPLICATION A PROBLEM?

Managing Chain Replication

• Screw up chain order -> screw up consistency

• “State of the art” isn't ideal

Review: State Of The Art

• The oracle: exactly one omniscient, infallible agent/program.

• Definitely bad for always-available/eventual consistency

• Active-standby oracle

• Not so helpful if chain is length > 2

• Even number -> split brain problem

• Config & monitoring is pain/nightmare/pure-evil/….

Review: State Of The Art

• Use strong consistency system to create a distributed oracle

• Example tools: Zookeeper, etcd

• ZK/etcd servers on separate boxes -> more stuff can break

• Awfully big & complex for Machi's design space

Review: State Of The Art

• Elastic Replication: "elastic
band" of chain managers

• If at least one chain is
running, all chains can be
bootstrapped

• Corner case: all fail
simultaneously

WHY DO WE WANT TO
IMPROVE THE STATE OF

THE ART?

Dumb File Service

• Dumb, 26 years ago: NFSv2

• Dumb, today: Machi

/* https://tools.ietf.org/html/rfc1094
*/
program NFS_PROGRAM {
 version NFS_VERSION {
 void
 NFSPROC_NULL(void) = 0;
 attrstat
 NFSPROC_GETATTR(fhandle) = 1;
 attrstat
 NFSPROC_SETATTR(sattrargs) = 2;
/* */
 statfsres
 NFSPROC_STATFS(fhandle) = 17;

Machi
“village” or “town”

// Protocol Buffers API requests:
//
// echo() :basic test
// auth() :start auth handshake
// append_chunk() :append bytes to file
// read_chunk() :read bytes from file
// trim_chunk() :delete bytes in file
// checksum_list():get checksum metadata
// list_files() :list files
//
// FIN. The end. That's all.

How Is This Better Than Hadoop?

• … or NFS or QFS or WTF or SeaweedFS or …

1. First: Replicate bits correctly 100% of the time

• Do cool stuff only after replication works

2. Checksum everything, end to end!

3. Two modes: strong consistency and eventual consistency

• Eventual consistency: CRDT-like, always-mergeable file
operations as a (dumb & robust) service

CONSENSUS AND
HUMMING IN THE IETF

RFC 7282

To reinforce that we do not vote, we have also adopted the
tradition of “humming”: When, for example, we have face-to-
face meetings and the chair of the working group wants to get a
“sense of the room”, instead of a show of hands, sometimes the
chair will ask for each side to hum on a particular question,
either “for” or “against”.

Once Upon A Time, There Were Some
Distributed Music Composers

<Fanfic Mode="Lamport" Allusion="The Part-
Time Parliament">

There Will Be A Quiz At The End

• How frequently do composers talk directly to each other?

About Our Music Composers

• Everyone follows strict rules for composition

• Voice leading, chord progression, rhythm, instrumentation…

• Need rough consensus on each measure of music

• All work in the same room ... unless they don't

• Small groups break out to rehearsal rooms. Or at coffee shop.

• For a few seconds. Or hours. Or years.

About The Composers’ Workflow
• Each measure of a manuscript is numbered

• Music is written only from beginning to end

• One measure at a time

• Blank measures will be removed by publisher, no worries

• Each measure is ranked for beauty, lyricism, etc.

• For lyricism, immediate earlier measures are important

• No mixing Happy Birthday + Thriller + Tijuana Taxi

Let’s Simplify: Plain Chant

• a.k.a. Gregorian plainsong or Byzantine chant

• Monophonic

• No tritones ("diabolus in musica") because … no chords!

• Strict voice leading rules

• Vocal only (no instrumentation to worry about)

Pie Jesus Domine, Dona Eis
Requiem ... {Headsmack}

Composer’s Workflow, Part 2
• Each composer acts independently

• All composers can hear humming in the same room

• But cannot hear humming in other rooms or coffee shop

• Each composer has a private manuscript to copy consensus
music measures

• All use indelible ink, impossible to change once written.

• Ignore anachronisms, e.g. music measures didn't exist in 6th
century

Composing A Measure Of Music

1. Check who is in the room & music in earlier measures

2. Check rules, tastes of composers in the room, …

3. Choose a note for the next measure and hum it.

4. If unison, then all agree: write note in private manuscript.

5. If not unison, then there's disagreement

• Leave the current measure blank, choose the next measure
number, go to step #1.

Interruptions, Disagreement, Etc.

• Each group in each room acts independently.

• If someone leaves the room? Write a new measure.

• If someone enters the room? Write a new measure.

• If someone takes a nap in the room? Write a new measure.

• If they try to (re)use an old measure number, scold them,
refuse the idea, and choose a new number

The Results Might Be...

WHAT IF THE COMPOSERS
ARE DEAF?

For Example: Ludwig Von Beethoven

Use Two Manuscripts!

• “Public” manuscript: write here instead of humming

• “Listen” by reading public manuscripts

• Anyone can read and write a public manuscript

• Helps us with slow/sleeping composers….

• “Private” manuscript: same use as our allegory

• Anyone can read from it, only the owner can write to it

</FANFIC
MODE="LAMPORT">

s/Lamport/Dijkstra/ if $MarkAllen_p

Question

• How frequently do composers talk directly to each other?

WHAT IF THE COMPOSERS
ARE COMPUTERS

PROGRAMMED BY…
ELVES?

Our Model

• Hosts & processes: If a client query times out, server can be
considered down (weaker than fail-stop).

• Failure detection is not accurate or timely.

• Network: Messages can be dropped or reordered

• Message corruption is detectable via checksum verification

Creeping Formality

• Measure number -> epoch number

• Epoch = time period when chain metadata is stable

• Chain metadata: membership, order, etc.

• Manuscript -> KV store of write-once registers (“Projection Store”)

• Key = epoch number + (public | private)

• Value = projection data structure

Creeping Formality

• Music composition rules -> chain state transition safety rules

• Strict separation: “in sync” prefix, “out of sync/repairing” suffix

• Never re-order “in sync” portion of chain

• Move “in sync” -> “repairing” at any time

• Move “repairing” -> “in sync” only after repair effort is OK

• Move “repairing” -> “in sync” only to end of in sync list

Chain State Transition, Before & After Repair
UPI = “Update Propagation Invariant”

Chain State Transition, Before & After Repair
UPI = “Update Propagation Invariant”

Creeping Formality

• A computer writes to all available public projection stores

• All available public projections at epoch number E are
equal -> “humming” in unison for epoch number E

• Private projection store remains writable only by owner

• After writing highest private epoch number, use that
projection for subsequent operation.

Sneak peek … we will return to this slide

Yeah, Another Quiz Question

• How frequently do humming consensus participants
communicate directly with each other?

No conflict at epoch 11 … until the net-split heals

Question

• How frequently do humming consensus participants
communicate directly with each other?

Different Modes Of Operation
• Strong consistency: Chain length >= majority quorum size

• CP mode minimum length prevents split brain syndrome

• 2f+1 servers to tolerate f failures: no longer “cheap”

• Eventual consistency: Chain length = 1 is OK!

• Machi files are write-once registers at byte level, all Machi
file ops are CRDT-like, always mergeable

• Humming Consensus can merge and repair chains after
network partition

Cheating The 2F+1 Chain Length

• Avoiding split brain: 2f+1 of “real” servers + “witness” servers

• A, B, and C are real servers: humming consensus + file
service; W1 & W2 are “witness servers” (humming
consensus only + quick epoch number check on read/write)

• Zero real server failures: A -> B -> C, 5 of 5 in h.c., 3 real

• One real server failure: W1 -> B -> C, 4 of 5 in h.c., 2 real

• Two real server failures: W1 -> W2 -> C, 3 of 5 in h.c., 1 real

TODAY’S DEVELOPMENT
STATUS

No Formal Proofs Yet

Today’s Humming Consensus

• Fully implemented (Erlang, service-agnostic (mostly))

• Works well in network partition simulator

• Property-based testing has been invaluable, with &
without using QuickCheck

• Hasn't seen The Real World yet!

• Source & docs: https://github.com/basho/machi

https://github.com/basho/machi

Network Partition Simulator
• Map: simulate uni-directional message drops between actors

• Example: A->B drop messages but B->A is OK

• Partition map may change at random intervals

• Partition map may remain frozen/stable

• Asymmetric partitions cause more chatter & churn, but HC
copes well enough today, still much room for improvement.

• Today’s code’s worst case: 7 or 9 actors (livelock struggle)

github.com/basho/machi … lots more in the ‘docs’ directory
bit.ly/humming-2015

Thank You!

https://github.com/basho/machi
http://bit.ly/humming-2015

REFERENCES AND
CREDITS

For More Information

• Source code repo: https://github.com/basho/machi/

• Docs: https://github.com/basho/machi/tree/master/doc

• Chain replication and CORFU: section 11 of https://github.com/basho/machi/blob/
95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf also, that paper’s bibliography

• On Consensus and Humming in the IETF: https://www.ietf.org/rfc/rfc7282.txt

• NFS v2 RFC: https://www.ietf.org/rfc/rfc1149.txt

• Elastic Replication: https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf

• The Part-time Parliament: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

https://github.com/basho/machi/
https://github.com/basho/machi/tree/master/doc
https://github.com/basho/machi/blob/95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf
https://www.ietf.org/rfc/rfc7282.txt
https://www.ietf.org/rfc/rfc1149.txt
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

For More Information

• HDFS: https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS

• QFS: https://en.wikipedia.org/wiki/Quantcast_File_System

• WTF: http://arxiv.org/abs/1509.07821

• Preprint of "The Design and Implementation of the Wave Transactional Filesystem"

• SeaweedFS: https://github.com/chrislusf/seaweedfs

• The original allegory: http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Quantcast_File_System
http://arxiv.org/abs/1509.07821
https://github.com/chrislusf/seaweedfs
http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

Image Credits
• Composers: http://blog.mymusictheory.com/wp-content/uploads/2012/12/composers-mix-529x300.jpg

• Neil Conway: https://twitter.com/neil_conway/status/656713576422379520

• Mark Callaghan: https://twitter.com/markcallaghan/status/656810474365841410

• Chain replication diagram: https://github.com/hibari/hibari-doc

• Beethoven: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Beethoven.jpg/399px-Beethoven.jpg

• Monty Python: http://images4.static-bluray.com/movies/covers/23375_front.jpg

• Under construction: https://github.com/h5bp/lazyweb-requests/issues/99

• Heinlein book+modification: Orb Books cover, 1997 (?)

• Scott’s photo library

Corfu-Style Epoch Management
• All client ops tagged with current epoch # E

• If client op E < E_current, then server refuses op

• Any hosed client is OOS until newer epoch is found.

• ... by reading from servers’ private projection stores

• If client op E > E_current, then server wedges self

• Any wedged server is OOS until newer epoch is chosen

• ... by humming consensus

