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Overview

• Introduction to Chain Replication

• Overview of Hibari’s Implementation

• 30 seconds on the OSI Systems Fault Model

• OSI FCAPS: Fault management

• OSI FCAPS: Performance management

• Erlang-Specific Issues
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Chain Replication
Papers

• “Chain Replication for Supporting High Throughput and
Availability” by Robbert van Renesse and Fred B. Schneider,
USENIX OSDI 2004.

• “Object Storage on CRAQ: High-throughput chain replication
for read-mostly workloads” by Jeff Terrace and Michael
J. Freedman, USENIX Tech, 2009
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Chain Replication
Overview

• A variation of master/slave replication

• State machine replication

• In contrast, quorum replication is more popular in open source

• Dynomite, Riak, Cassandra
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Chain Replication Messaging Flows
Strong Consistency: Read the Last Write

Client 1 Head ServerUpdate request

Client 2Tail Server Read request

Middle 1 Server

Replication

Middle 2 Server

Replication

Replication

Update reply

Read reply
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Hibari Overview

• Top layer: consistent hashing
• Collections of billions of keys

• Middle layer: chain replication
• Replicate a single key
• Single collection of 0 – 50 million keys

• Bottom layer: storage brick
• Store a single key
• Single collection of 0 – 50 million keys
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Hibari Logical Architecture: View 1
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Hibari Logical Architecture: View 2
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OSI/ISO Systems Fault Model: FCAPS

• Fault
• Recognize, isolate, correct, and record faults

• Configuration
• Gather, store, and modify device configuration state

• Accounting
• Gather and store resource usage and billing data

• Performance
• Gather, store, and analyze performance data

• Security
• Gather, store, and modify device access control
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Performance Management
Research Papers vs. Planned Use

• van Renesse and Schneider (2004):
• Performance experiments are simulated

• Terrace and Freedman (2009):
• Performance measured on Emulab pc3000-type machines
• Focused on read-mostly workload:

• Read:write ratio of 50:1 upwards to 150:1 (?)

• Gemini’s planned use
• Low-to-mid-range x86 64 servers + RAID disk
• Write-heavy workload: read:write ratio of 3:1 or worse
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Performance Management
I/O Latency

• Hard disks are no fun. . . .

• Write latency
• Append-only logs to minimize disk head seeks

• Log files are the only data structure

• fsync(2) latency + hard disks = slow

• Hibari default: all updates are durable

• All logical brick logs written to a common log
• The common log aggregates fsync(2) requests

• Most Hibari bugs were in write/sync management code.
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Performance Management
I/O latency

• Read latency
• Read I/O generators: normal workload, brick repair, key

migration, data “scavenger”
• Avoid blocking gen server processes with I/O

• “primer”: spawn proc to pre-read value data
• Borrowed from Squid HTTP cache, Flash HTTP server

• Access by lexicographic vs. temporal orders

• Repair and migration: lexicographic order (by key)
• Optimal read I/O pattern: temporal order (by update time)
• Full repair of 2-3 TByte brick can take several days

• Rate control
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Performance Management
I/O latency

• Other workload factors:
• Chain reordering
• OS-based read-ahead
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Configuration Management
The “master”

• van Renesse and Schneider (2004) call for a “master”:

• Detects failures

• Reorders chains

• Informs clients about new chain state

• “In what follows, we assume the master is a single process
that never fails.”

• In prototype, multiple master processes + Paxos replication
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Configuration Management
Hibari Admin Server

• Admin Server is a single running entity
• Active/standby OTP application
• Static configuration: only 2 or 3 machines in cluster

• Monitors health of each logical brick

• Reconfigures chains when brick health changes

• Stores brick health history in Hibari logical bricks
• Uses quorum replication
• Avoid “chicken and the egg” bootstrap problem

• But . . . OTP app controller is vulnerable to network partition
• Segue to the next FCAPS topic. . .
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Fault Management

• Detect Admin Server failures

• Detect brick failures

• Detect network partitions

• Detect brick failures during network partitions?

• Repair out-of-sync replicas
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Fault Management

• van Renesse and Schneider (2004): “Servers are assumed to
be fail-stop”

• Terrace and Freedman (2009): same

• Fail stop means . . . stop?
• Except when network partitions heal

• Kill any brick that makes illegal health state transition

• Except in arbitrary message delays

• net kernel deadlock
• busy dist port throttling
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Fault Management
Replica repair/re-sync

• van Renesse and Schneider: add repairing/re-syncing server at
end of chain

• Also: Replay all updates in same order

• But . . . non-trivial task with concurrent updates!
• Update key K vs. repair K
• Manage write(2) and fsync(2) delays on both bricks

• 99th percentile latency of 350+ milliseconds not uncommon
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Fault Management
Other items

• Partition detector app
• Use two physical networks to detect partition of one network

• Key timestamps . . . strictly increasing with each update
• Clients: enable compare-and-swap atomic operations
• Servers: quick way to determine key sync status

• File checksums
• Crash brick when corruption is detected

• Replica placement
• Very flexible, but no automatic “rack awareness”
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Fault/Configuration Management
Automatic Key Migration

• Change chain length, i.e. change replication factor

• Add/remove/reweight chains

• Automatically rebalance keys across chains
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Erlang-Specific Issues

• Messaging reliability
• “Send and pray” — Joe Armstrong
• . . . too easy to forget when buried in code

• Murphy’s law
• A process rate-limited at 40 msgs/sec sends 85,000 messages

in 60 seconds?
• Impossible . . . but it really happened

• Be extra-conscious of code with side-effects

• How many nodes can Erlang network distribution support?
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Thank You!

• ACM anonymous reviewers, Louise Lystig Fritchie, Olaf
Hall-Holt, Satoshi Kinoshita, James Larson, Romain Lenglet,
Jay Nelson, Joseph Wayne Norton, Gary Ogasawara, Mark
Raugas, Justin Sheehy, Ville Tuulos, and Jordan Wilberding

• http://hibari.sourceforge.net/

• http://www.snookles.com/slf-blog/tag/hibari/

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 22/22


