
Chain Replication in Theory and in Practice

Scott Lystig Fritchie
slfritchie@snookles.com

Gemini Mobile Technologies

September 30, 2010

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 1/22

Overview

• Introduction to Chain Replication

• Overview of Hibari’s Implementation

• 30 seconds on the OSI Systems Fault Model

• OSI FCAPS: Fault management

• OSI FCAPS: Performance management

• Erlang-Specific Issues

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 2/22

Chain Replication
Papers

• “Chain Replication for Supporting High Throughput and
Availability” by Robbert van Renesse and Fred B. Schneider,
USENIX OSDI 2004.

• “Object Storage on CRAQ: High-throughput chain replication
for read-mostly workloads” by Jeff Terrace and Michael
J. Freedman, USENIX Tech, 2009

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 3/22

Chain Replication
Overview

• A variation of master/slave replication

• State machine replication

• In contrast, quorum replication is more popular in open source

• Dynomite, Riak, Cassandra

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 4/22

Chain Replication Messaging Flows
Strong Consistency: Read the Last Write

Client 1 Head ServerUpdate request

Client 2Tail Server Read request

Middle 1 Server

Replication

Middle 2 Server

Replication

Replication

Update reply

Read reply

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 5/22

Hibari Overview

• Top layer: consistent hashing
• Collections of billions of keys

• Middle layer: chain replication
• Replicate a single key
• Single collection of 0 – 50 million keys

• Bottom layer: storage brick
• Store a single key
• Single collection of 0 – 50 million keys

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 6/22

Hibari Logical Architecture: View 1

Chain 0 Chain 1 Chain 2 Chain 3 Chain 4

Client

Key V

Key W Key X Key Y
Key Z

Bottom Layer: The Storage Brick
 10 logical bricks
 5 physical bricks

Middle
Layer:
Chain
Replication

Top Layer:
Consistent
Hashing

Head3 Head4

Tail4Tail3

Head2

Tail2

Head1

Tail1

Head0

Tail0

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 7/22

Hibari Logical Architecture: View 2

Head0

Physical
Brick 1

Physical
Brick 0

Physical
Brick 2

Physical
Brick 3

Physical
Brick 4

Chain 0

Chain 1

Chain 2

Chain 3

Chain 4

Client Consistent hashing by client: {Table, Key} -> Chain

Tail0

Head1 Tail1

Head2 Tail2

Head3 Tail3

Head4Tail4

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 8/22

OSI/ISO Systems Fault Model: FCAPS

• Fault
• Recognize, isolate, correct, and record faults

• Configuration
• Gather, store, and modify device configuration state

• Accounting
• Gather and store resource usage and billing data

• Performance
• Gather, store, and analyze performance data

• Security
• Gather, store, and modify device access control

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 9/22

Performance Management
Research Papers vs. Planned Use

• van Renesse and Schneider (2004):
• Performance experiments are simulated

• Terrace and Freedman (2009):
• Performance measured on Emulab pc3000-type machines
• Focused on read-mostly workload:

• Read:write ratio of 50:1 upwards to 150:1 (?)

• Gemini’s planned use
• Low-to-mid-range x86 64 servers + RAID disk
• Write-heavy workload: read:write ratio of 3:1 or worse

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 10/22

Performance Management
I/O Latency

• Hard disks are no fun. . . .

• Write latency
• Append-only logs to minimize disk head seeks

• Log files are the only data structure

• fsync(2) latency + hard disks = slow

• Hibari default: all updates are durable

• All logical brick logs written to a common log
• The common log aggregates fsync(2) requests

• Most Hibari bugs were in write/sync management code.

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 11/22

Performance Management
I/O latency

• Read latency
• Read I/O generators: normal workload, brick repair, key

migration, data “scavenger”
• Avoid blocking gen server processes with I/O

• “primer”: spawn proc to pre-read value data
• Borrowed from Squid HTTP cache, Flash HTTP server

• Access by lexicographic vs. temporal orders

• Repair and migration: lexicographic order (by key)
• Optimal read I/O pattern: temporal order (by update time)
• Full repair of 2-3 TByte brick can take several days

• Rate control

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 12/22

Performance Management
I/O latency

• Other workload factors:
• Chain reordering
• OS-based read-ahead

Brick A

Brick B

Brick C

Brick A

Brick C

Brick C

Brick B

Brick C

Brick A

Brick B

Brick C Brick A

Brick B

Brick C

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 13/22

Configuration Management
The “master”

• van Renesse and Schneider (2004) call for a “master”:

• Detects failures

• Reorders chains

• Informs clients about new chain state

• “In what follows, we assume the master is a single process
that never fails.”

• In prototype, multiple master processes + Paxos replication

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 14/22

Configuration Management
Hibari Admin Server

• Admin Server is a single running entity
• Active/standby OTP application
• Static configuration: only 2 or 3 machines in cluster

• Monitors health of each logical brick

• Reconfigures chains when brick health changes

• Stores brick health history in Hibari logical bricks
• Uses quorum replication
• Avoid “chicken and the egg” bootstrap problem

• But . . . OTP app controller is vulnerable to network partition
• Segue to the next FCAPS topic. . .

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 15/22

Fault Management

• Detect Admin Server failures

• Detect brick failures

• Detect network partitions

• Detect brick failures during network partitions?

• Repair out-of-sync replicas

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 16/22

Fault Management

• van Renesse and Schneider (2004): “Servers are assumed to
be fail-stop”

• Terrace and Freedman (2009): same

• Fail stop means . . . stop?
• Except when network partitions heal

• Kill any brick that makes illegal health state transition

• Except in arbitrary message delays

• net kernel deadlock
• busy dist port throttling

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 17/22

Fault Management
Replica repair/re-sync

• van Renesse and Schneider: add repairing/re-syncing server at
end of chain

• Also: Replay all updates in same order

• But . . . non-trivial task with concurrent updates!
• Update key K vs. repair K
• Manage write(2) and fsync(2) delays on both bricks

• 99th percentile latency of 350+ milliseconds not uncommon

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 18/22

Fault Management
Other items

• Partition detector app
• Use two physical networks to detect partition of one network

• Key timestamps . . . strictly increasing with each update
• Clients: enable compare-and-swap atomic operations
• Servers: quick way to determine key sync status

• File checksums
• Crash brick when corruption is detected

• Replica placement
• Very flexible, but no automatic “rack awareness”

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 19/22

Fault/Configuration Management
Automatic Key Migration

• Change chain length, i.e. change replication factor

• Add/remove/reweight chains

• Automatically rebalance keys across chains

0.0 0.500 1.0

Chain 1
50.0%

Chain 2
50.0%

0.0 0.500 1.00.333 0.833

Chain 1
33.3%

Chain 2
33.3%

Chain 3
16.7%

Chain 3
16.7%

0.0 0.500 1.00.333 0.8330.7500.250 0.459 0.959

Chain
 4
4.15%

Chain 1
25.0%

Chain
 4
4.15%

Chain 4
8.33%

Chain 4
8.33%

Chain 2
25.0%

Chain 3
12.3%

Chain 3
12.3%

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 20/22

Erlang-Specific Issues

• Messaging reliability
• “Send and pray” — Joe Armstrong
• . . . too easy to forget when buried in code

• Murphy’s law
• A process rate-limited at 40 msgs/sec sends 85,000 messages

in 60 seconds?
• Impossible . . . but it really happened

• Be extra-conscious of code with side-effects

• How many nodes can Erlang network distribution support?

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 21/22

Thank You!

• ACM anonymous reviewers, Louise Lystig Fritchie, Olaf
Hall-Holt, Satoshi Kinoshita, James Larson, Romain Lenglet,
Jay Nelson, Joseph Wayne Norton, Gary Ogasawara, Mark
Raugas, Justin Sheehy, Ville Tuulos, and Jordan Wilberding

• http://hibari.sourceforge.net/

• http://www.snookles.com/slf-blog/tag/hibari/

ACM Erlang Workshop 2010: Chain Replication in Theory and in Practice 22/22

