
COORDINATING
DISTRIBUTED SYSTEM

CONFIGURATION
CHANGES WITH HUMMING

CONSENSUS
Scott Lystig Fritchie, Basho Japan

PaPOC 2016, London
2016-04-18

Machi
“village” or “town”

Motivation

• Building a distributed, fault-tolerant blob/file store: Machi.

• Support eventual consistency (EC) … we are Basho.

• Support strong consistency (SC) … sometimes you want it.

• Not both modes at the same time.

• Use the same configuration manager for EC & SC modes.

Motivation

• SC management system & framework smorgasbord!

• ZooKeeper, etcd, Raft+framework, Paxos+framework, …

• The availability of a distributed system is limited by the
availability of its manager.

• Failure of majority of nodes will cripple SC managers.

• We want EC Machi to be available even with 1 node alive.

Motivation

• EC managers are far less common.

• Riak Core is an obvious choice but has too many Riak-style
assumptions for use by Machi.

• Power-of-2 ring partitioning

• Preference list calculation method

Managing System Configuration

dd if=/dev/random bs=4k \
of=/etc/myapp.conf

Managing System Configuration

dd if=/dev/random bs=4k \
of=/etc/myapp.conf

NO!
• Valid configurations are not random
• Config metadata can include:

• Type of service (Riak, MySQL, HTTP reverse proxy)
• Network use (IP addresses & ports, protocols spoken)
• Static group membership (defined by sysadmin)
• Dynamic group membership (defined by runtime behavior)

WHAT IS CHAIN
REPLICATION?

Chain Replication On One Slide

• Variant of primary/secondary replication: strict chain order!

• Sequential read @ tail. Linearizable read @ all.  
Dirty read @ head or middle.

Managing Chain Replication

• Screw up chain order -> screw up consistency

• Today’s managers assume SC only environments

• What about Machi in EC mode?

Machi’s Configuration Metadata
• Chain name

• Consistency mode: EC, SC

• Static membership: Servers permitted to replicate this chain

• Dynamic membership: Who’s running? Who’s dead?

• Chain order

• Coordinating chain repair

• Data re-sync when server reboots/newly-added.

CONSENSUS AND
HUMMING IN THE IETF

RFC 7282

To reinforce that we do not vote, we have also
adopted the tradition of “humming”: When, for
example, we have face-to-face meetings and the
chair of the working group wants to get a “sense of
the room”, instead of a show of hands, sometimes
the chair will ask for each side to hum on a particular
question, either “for” or “against”.

INSTEAD OF MEASURING
HUMMING VOLUME, WHAT
IF WE MEASURE PITCH?

Once Upon A Time, There Were Some
Distributed Music Composers

INSTEAD OF MEASURING
HUMMING VOLUME, WHAT

IF MEASURED PITCH?
• I choose B-flat.
• I hum B-flat.
• I listen.
• I hear unison B-flat.
• The answer is B-flat.

INSTEAD OF MEASURING
HUMMING VOLUME, WHAT

IF MEASURED PITCH?
• I choose B-flat.
• I hum B-flat.
• I listen.
• I hear B-flat, D, and E: discord!
• Not unanimous. Try again.

What Could Go Wrong?

Our Model
• “Fail recovery”: crash & restart a finite number of times.

• Message omission permitted.

• Messages can be dropped or reordered.

• Message corruption is detectable via checksum verification.

• Failure detection is eventually accurate.

• No Byzantine misbehavior.

• Each participant is independent, uses same rules & invariants.

Epoch Register Store

• Modeled as a map:

• Key = epoch #

• Value = write once register, blob of configuration (app-
specific)

• Each participant has an epoch register store, accessible to all.

• All communication between HC participants is solely via the
epoch register stores.

Humming Consensus On A Slide

1. Read config with largest epoch number from all available
epoch register stores.

2. If minimum # of servers are available and all found copies of
latest epoch # are unanimous/equal:

1. If current config = latest config, stop.
2. If transition current -> latest is safe, use latest & stop.
3. Else we ignore the latest epoch’s value!

3. Calculate a new config with new & bigger epoch number,
blindly write it to all epoch register stores. Goto step 1.

SC mode: No conflict at epoch 11 … until the net-split heals

Epoch Register Store

TODAY’S STATUS

No Formal Proofs Yet

Today’s Humming Consensus

• Fully implemented in Erlang

• Works well in network partition simulator

• Property-based testing has been invaluable, with &
without using QuickCheck

• Hasn't seen The Real World yet!

• Source & docs: https://github.com/basho/machi

https://github.com/basho/machi

Network Partition Simulator
• Map: simulate uni-directional message drops between actors

• Example: A->B drop messages but B->A is OK

• Partition map may change at random intervals

• Partition map may remain frozen/stable

• Asymmetric partitions cause more chatter & churn, but HC
copes well enough today, still room for improvement.

• Today’s practical size: 7 or 9 actors (livelock struggle)

HC’s biggest problem: flapping

• Bickering children: I’m right, you’re wrong, no compromise!

• Example: Assume that current chain order is [A,B,C].

• Messages from A->B fail but all other combinations are ok

• A believes that B is down, next config suggestion = [A,C]

• B believes that A is down, next config suggestion = [B,C]

• C believes nobody is down, next config suggestion = [A,B,C]

Detecting Flapping

• Very easy method … in hindsight.

• If I suggest the exact same config R times in a row, then I am
flapping.

• R’s value set as a heuristic … 4 or 5 works well.

Mitigating Flapping

• Machi uses simple method: fall back to simplest safe chain

• EC mode: chain of length 1: [Myself]

• SC mode: chain of length 0: []

• I.e., withdraw myself from service

• Existing repair & merge logic acts to fix the chain.

• Future improvement possible to reduce churn.

Insight In Hindsight

• It’s OK to ignore a configuration written to the epoch store!

• Valid configuration state change space is small.

• Independent actors can select a valid config transition.

• If a configuration transition looks insane, then write
another one.

Questions?

Thank You!

Eventual Consistency + C.R.
• WAT? Chain replication w/o strong consistency is crazy!

• Machi’s file data is CRDT’ish: merge any write in any order

• How? Write-once registers plus file namespace tricks

• CR’s value to Machi

• Cheaper than quorum replication: f+1 to survive f failures

• Entropy management: If server X fails, what is my risk of
data loss?

Different Modes Of Operation
• Strong consistency: Chain length >= majority quorum size

• CP mode minimum length prevents split brain syndrome.

• 2f+1 servers to tolerate f failures.

• Eventual consistency: Chain length = 1 is OK!

• Machi files are write-once registers at byte level, all Machi
file ops are CRDT-like, always mergeable.

• Humming Consensus can chain repair and chain merge
after network partition.

Chain State Transition Invariants

• Strict separation: “in sync” prefix, “repairing/out of sync” suffix

• Never re-order “in sync” portion of chain

• Move “in sync” -> “down” at any time

• Move “down” -> “repairing” at any time

• Move “repairing” -> “in sync” only after repair effort is OK

• Move “repairing” -> “in sync” only to end of in sync list

Cheating The 2F+1 Chain Length

• Avoiding split brain: 2f+1 of “real” servers + “witness” servers

• A, B, and C are real servers: humming consensus + file
service; W1 & W2 are “witness servers” (humming
consensus only + quick epoch number check on read/write)

• Zero real server failures: A -> B -> C, 5 of 5 in h.c., 3 real

• One real server failure: W1 -> B -> C, 4 of 5 in h.c., 2 real

• Two real server failures: W1 -> W2 -> C, 3 of 5 in h.c., 1 real

Corfu-Style Epoch Management
• All client ops tagged with current epoch # E

• If client op E < E_current, then server refuses op

• Any hosed client is OOS until newer epoch is found.

• ... by reading from servers’ private projection stores

• If client op E > E_current, then server wedges self

• Any wedged server is OOS until newer epoch is chosen

• ... by humming consensus

REFERENCES AND
CREDITS

For More Information

• Source code repo: https://github.com/basho/machi/

• Docs: https://github.com/basho/machi/tree/master/doc

• Chain replication and CORFU: section 11 of https://github.com/basho/machi/blob/
95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf also, that paper’s bibliography

• On Consensus and Humming in the IETF: https://www.ietf.org/rfc/rfc7282.txt

• NFS v2 RFC: https://www.ietf.org/rfc/rfc1149.txt

• Elastic Replication: https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf

• The Part-time Parliament: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

https://github.com/basho/machi/
https://github.com/basho/machi/tree/master/doc
https://github.com/basho/machi/blob/95437c2f0b6ce2eec9824a44708217a266e880b6/doc/high-level-machi.pdf
https://www.ietf.org/rfc/rfc7282.txt
https://www.ietf.org/rfc/rfc1149.txt
https://www.cs.cornell.edu/projects/quicksilver/public_pdfs/er-socc.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.2111&rank=1

For More Information

• HDFS: https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS

• QFS: https://en.wikipedia.org/wiki/Quantcast_File_System

• WTF: http://arxiv.org/abs/1509.07821

• Preprint of "The Design and Implementation of the Wave Transactional Filesystem"

• SeaweedFS: https://github.com/chrislusf/seaweedfs

• The original allegory: http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Quantcast_File_System
http://arxiv.org/abs/1509.07821
https://github.com/chrislusf/seaweedfs
http://www.snookles.com/slf-blog/2015/03/01/on-humming-consensus-an-allegory/

Image Credits
• Composers: http://blog.mymusictheory.com/wp-content/uploads/2012/12/composers-mix-529x300.jpg

• Neil Conway: https://twitter.com/neil_conway/status/656713576422379520

• Mark Callaghan: https://twitter.com/markcallaghan/status/656810474365841410

• Chain replication diagram: https://github.com/hibari/hibari-doc

• Beethoven: https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Beethoven.jpg/399px-Beethoven.jpg

• Monty Python: http://images4.static-bluray.com/movies/covers/23375_front.jpg

• Under construction: https://github.com/h5bp/lazyweb-requests/issues/99

• Heinlein book+modification: Orb Books cover, 1997 (?)

• Scott’s photo library

